Quadrupole mass spectrometer system QMG 422

Table of contents

Validity 2
1 Safety 3
1.1 Symbols used 3
1.2 Intended use 3
1.3 Safety information 3
1.4 Liability and warranty 3
1.5 Courses 3
2 Overview 4
2.1 QMS 422 control unit 5
2.2 QMI 422 control unit 5
2.3 EP 422 Electrometer preamplifier 5
2.4 Family 400 components 5
2.5 Family 125 components 6
2.6 Options 6
3 Technical data 8
3.1 General 8
3.2 QMS 422 control unit 8
3.3 CS 422 operator console 8
3.4 QMI 422 control unit 8
3.5 QC 422 quadruple controller 8
3.6 IS 420 Ion source supply 12
3.7 EP 422 Electrometer 13
3.8 CP 400 Ion counter preamplifier 13
3.9 HV 420 High voltage supply 14
3.10 HV 421 High voltage supply 14
3.11 DI 420 Digital Input 14
3.12 DO 420A Digital Output 15
3.13 Al 421 Analog Input 15
3.14 OH 421 Optical Hub 15
4 Installation 16
4.1 QMS/QMI 422 16
4.2 Overall system 16
4.3 EP 422 17
4.4 CP 400 17
4.5 Cabling with QMA 400 18
4.6 Cabling with QMA 125 19
4.7 RS-232-C interface 19
4.8 LAN interface 20
4.9 Installing/removing options 22
5 Description 25
5.1 Operator console 25
5.2 Functions 26
5.3 Parameter list 28
6 Operation 38
6.1 Initial start up 38
6.2 Filament protection 38
6.3 Degas 39
6.4 Offset correction 39
6.5 Ion counter 39
6.6 Extern input 40
6.7 Simulation 40
6.8 Measurement cycle 40
6.9 Electrometer modes 41
6.10 Mass scan modes 42
6.11 Integral spectrum 43
6.12 Adjust 43
6.13 Analog outputs 46
6.14 Switching functions 49
7 Troubleshooting 51
7.1 General 51
7.2 Warnings 51
7.3 Error messages 51
7.4 Measurement signal problems 53
7.5 General problems 54
7.6 Service interventions 55
8 Maintenance 55
9 Decommissioning 55
10 Spare parts and accessories 56
Appendix 57
A: Default parameter values 57
B: Literature 58
C: Index 59
Validity

This document applies to QMG 422 systems with QMS 422 and QMI 422 control units equipped with the modules listed on page 56 , some of which come with their own operating instructions.
It is valid for firmware numbers:

$$
\begin{array}{ll}
\text { DSP / PRG No. } & \text { BG } 509732 \text {-.. } \\
\text { QMS / PRG No. } & \text { BG } 509733 \text {-. } \\
\text { CS } 422 \text { / PRG No. BG } 509734-. .
\end{array}
$$

The above numbers can be read out with config-TEST or the Balzers Quadstar ${ }^{\text {TM }} 422$ software. The letter (A...Z) at the end of the number represents the modification index which indicates the firmware level. This operating manual remains valid as long as only the index changes. In most cases the function is enhanced but also additional functions may be included that are not described in this edition.
We reserve the right to make engineering changes without notice.

1 Safety

1.1 Symbols used

1.3 Safety information

1.4 Liability and warranty

1.5 Courses

DANGER

Information on preventing any kind of personal injury.

WARNING

Information on preventing extensive equipment and environmental damage .

[1] Note

Information on correct handling or use. Disregard may lead to malfunctions or minor equipment damage.

Skilled personnel

Instructions marked with this symbol may only be carried out by persons who have suitable technical training and the necessary experience to do it safely

italic-ITALIC:ITALIC Function-PARAMETERNAME:PARAMETERVALUE

 Example: mass-FIRST:12 (starting mass 12 of the mass scan)The QMG 422 is a mass spectrometer designed for gas analysis in the high vacuum range. It may be used only for this purpose. The instructions in this user's guide and in those of the accessories must be conscientiously followed.

DANGER

The QMG 422 is not intended to produce measurement results on which the safety of persons or large assets depend. For such applications the safety must be ensured by additional measures.

Adhere to the applicable regulations and take the necessary precautions for the process media used.
When returning products that have been exposed to the vacuum for maintenance or repair, enclose a declaration of contamination (form VDMA No. 2121).
Adhere to the forwarding regulations and prescriptions of the countries and forwarding agencies concerned.
Before handling any used instruments or components, find out whether they are contaminated. Adhere to the relevant regulations and take the necessary precautions when handling contaminated parts.
Pass on the safety information to other users.
Balzers assumes no liability and the warranty becomes null and void if the custo dian or third parties

- disregard the information in this document
- use the product in a non-conforming manner
- make any kind of changes (modifications, alterations etc.) to the product
- use the product with accessories not listed in the corresponding product documentation
The custodian assumes the responsibility in conjunction with the process media used.

Courses

Balzers offers application, operating and maintenance courses for the best use of this product. Please inquire with your local Balzers partner.

Family 400

Family 125

Basic information on the quadrupole mass spectrometer can be found in [1].
The QMG 422 comprises two equipment families:
In the family 400 the analyzers QMA 400 and QMA 430 (8 mm rod diameter) and QMA 410 (16 mm rod diameter) and the HF generators QMH 400/410 with mass ranges of 128 to $2048 u$ are used.
400 This symbol refers to information that is applicable only to Series 400 components.

For an explanation of the abbreviations see Sections 2.3 to 2.7
For ion counting the CP 400 ion counter preamplifier rather than the EP422/2 electrometer is used.
With a QMI 422 rather than QMS 422 no system bus, IS 420 ion source supply, HV 420/421 high voltage supply and options are available.

The family 125 uses the QME 125 mass filter electronics with the mass ranges 100 and 200 u and QMA 125 analyzers with 6 mm rod diameter.

This symbol refers to information that is applicable only to Series 125 equipment

With QMS 422 rather than QMI 422 the system bus and consequently the options are also available for this family.

2.1 QMS 422 control unit

2.2 QMI 422 control unit

The basic unit comprises the power supply, QC 422 quadrupole controller and the system bus.

For family 400 components the IS 420 and HV 420 or HV 421 are installed.

Input/output modules can be installed in either family.

The QMI 422 comprises the power supply and QC 422 quadrupole controller and allows computer operation of family 125 equipment.

QMH/QMA 400 can be operated, but without ion source and SEM supply.
The only option available is the AO 421 analog output or IC 421 ion counter.

2.3 EP 422 Electrometer preamplifier

The EP 422 amplifies the very small ion current signals of the analyzer to voltage levels that are suitable for further processing. It is installed directly on the analyzers in order to minimize parasitic noise.

- Compact, simple installation on QMA
- Low-noise, low-drift, little vibration sensitivity
- Fast response and quick recovery form overdriving

On analyzers with 90° off-axis SEM, two EP 422 can be connected. This allows simple changeover from Faraday to SEM mode.

2.4 Family 400 components

QMH 400/410

The HF generator produces the high-frequency voltage required for mass separation. [3]

QMH type	Range [u]	QMA type	Rod ø [mm]
QMH400-1	128	QMA410	16
QMH400-5	300	QMA430	8
QMH400-5	512	QMA400	8
QMH410-1	1024	QMA400	8
QMH410-2	2048	QMA400	8
QMH410-3	340	QMA410	16

Note: In the following QMH 400 or QMA 400 always refers to all types if nothing else is specified.

QMA 400

The 400 analyzer comprises the ion source, mass filter, ion collector and housing. [5]
Ion collector types:
SEM 217: $\quad 90^{\circ}$ off-axis with integrated Faraday
SEM 218: $\quad 90^{\circ}$ off-axis with integrated Faraday and separate conversion dynode CD
On request: Faraday collector only

IS 420

The ion source supply is installed in the QMS 422. and supplies the ion source with the necessary operating voltages.

- Programmable potentials, short-circuit-proof.
- Polarity reversible for positive and negative ions
- Normal mode/degas mode
- Suitable for all ion source type of the QMA 400

HV 420 / HV 421

2.5 Family 125 components

QME 125

QMA 125

2.6 Options

CS 422

AO 421 / IC 421

CP 400

Input/Output

Vacuum measurement

OPA 200

The high-voltage supply is installed in the QMS 422 and supplies the SEM with the necessary high voltage.
HV 420: For positive ions with SEM 217
HV 421: For positive and negative ions with SEM 217 or for positive ions with the separate conversion dynode of the SEM 218.

The mass filter electronics QME 125 [4] comprises the ion source supply, high frequency generator and SEM high voltage supply.
QME 125-1: Mass range 100
QME 125-2: Mass range 200
A special version with 6 m cable between QME 125-1 and QMA 125 is available.

The QMA 125 analyzer [6] comprises the ion source, mass filter, ion collector and housing.
3 Ion collector types are available:
Faraday, Faraday/Channeltron, 90° SEM

The operator console of the CS 422 is installed in the QMS 422 and allows manual operation.

The AO 421 analog output supplies 12 analog signals. These can be measured values of the QC 422 or values calculated and transmitted by the PC.
In addition to the counter the IC 421 ion counter contains the 12 analog outputs of the AO 421.
It is installed directly (without system bus) into the QC 422.

The ion counter preamplifier comprises the pulse coupling, amplifier and pulse height discriminator with adjustable threshold.
It is installed directly on the QMA with 90° off-axis SEM and is connected to the IC 421 .

Al 421: 16 channel analog input module
DI 420: 32 bit digital input module
DO 420A: 32 bit digital output module

PI 420: Dual Pirani module for coarse and fine vacuum [9]
PE 420: Penning module for high vacuum [10]

OPA200 network controller board for the ARCNET® local area network (LAN). It is installed in the PC [7].

OH 421

5-Port optical hub (star distributor) for the ARCNET® local area network (LAN)
Up to 255 nodes can be cascaded

OHA 200
5 or 10 port optical hub (star distributor) for the ARCNET® local area network (LAN) [8].

3 Technical data

3.1 General

3.2 QMS 422 control unit

3.3 CS 422 operator console

3.4 QMI 422 control unit

This information applies to all components unless specified otherwise.

Ambient conditions

Temperature	Storage: $-40^{\circ} \ldots+65^{\circ} \mathrm{C} /$ Operation: $+5^{\circ} \mathrm{C} \ldots+40^{\circ} \mathrm{C}$
Relative humidity	max. 80% up to $+31^{\circ} \mathrm{C}$, decreasing linearly to 50% at $+40^{\circ} \mathrm{C}$
Use	indoors, altitude up to 2000 m
Type of protection	IP 30: protection $\mathbf{2} 2.5 \mathrm{~mm}$ against particles no protection against water
Standards	
Safety	EN 61010-1: Protection class 1, pollution degree 2, overvoltage category II
EMC	EN 50081-2, EN 50082-2

Power: 90 ... 265 VAC, 47 ... $63 \mathrm{~Hz}, 300$ W $_{\text {max }}$
Dimensions:

Weight: 9.6 kg with QC 422 (without additional modules)
Number of slots: Total 17, used by QC 422: 3
Matching to QMS 422
Backlit LCD display, 4 lines of 40 characters each, 5 status LEDs, membrane keyboard
Weight: 0.75 kg
Power: 90 ... 265 VAC, 47 ... $63 \mathrm{~Hz}, 200$ W $_{\text {max }}$
Dimensions:

Weight: 6.5 kg with QC 422

Slots	3 (with and without AO 421 or IC 421)
Number per unit	1
Weight	0.67 kg without / 0.9 kg with AO/IC421
Number of measurement channels	64
Operating modes	MONO/MULT/ channel
Measurement cycles	$1 \ldots 10 ' 000$, or REPEAT
Channel switching time	$1.5 . . .3 \mathrm{~ms}$ (with min. PAUSE)

Mass scan modes	mass-MODE	Purpose
	SCAN-N	Analog scan normal
SCAN-F	Analog scan with FIR filter for measured value	
STAIR	Scan Bargraph	
SAMPLE	Single mass and MID (Multiple lon Detection)	
PEAK-L	Peak search with level criterion	
PEAK-F	Peak search with FIR FILTER	

Mass scale resolution

	STEPS per mass 1)	
$S P E E D$	FIX-Range	AUTO-Range
$0.5 \ldots 1 \mathrm{~ms} / \mathrm{u}$	$16 / \mathrm{u}$	---
$2 \ldots 5 \mathrm{~ms} / \mathrm{u}$	$32 / \mathrm{u}$	---
$10 \ldots 20 \mathrm{~ms} / \mathrm{u}$	$64 / \mathrm{u}^{2)}$	$16 / \mathrm{u}$
$50 \ldots 100 \mathrm{~ms} / \mathrm{u}$	$64 / \mathrm{u}^{2)}$	$32 / \mathrm{u}$
$0.2 \ldots 60 \mathrm{~s} / \mathrm{u}$	$64 / \mathrm{u}^{2)}$	$64 / \mathrm{u}^{2)}$

${ }^{1)}$ See STEPS page $36{ }^{2)} 32$ at mass range 2048
Measurement speeds

	EP 422 or ext. input		Ion counter
mass-MODE	FIX-Range	AUTO-Range	AUTO-Range
SAMPLE	$0.5 \mathrm{~ms} \ldots 60 \mathrm{~s}$	$0.5 \mathrm{~ms} \ldots 60 \mathrm{~s}$	$1 \mathrm{~ms} \ldots 60 \mathrm{~s}$
STAIR	$0.5 \mathrm{~ms} / \mathrm{u} \ldots 60 \mathrm{~s} / \mathrm{u}$	$2 \mathrm{~ms} / \mathrm{u} \ldots 60 \mathrm{~s} / \mathrm{u}$	$2 \mathrm{~ms} / \mathrm{u} \ldots 60 \mathrm{~s} / \mathrm{u}$
SCAN	$0.5 \mathrm{~ms} / \mathrm{u} \ldots 60 \mathrm{~s} / \mathrm{u}$	$10 \mathrm{~ms} / \mathrm{u} . .60 \mathrm{~s} / \mathrm{u}$	$20 \mathrm{~ms} / \mathrm{u} \ldots 60 \mathrm{~s} / \mathrm{u}$
PEAK	$0.5 \mathrm{~ms} / \mathrm{u} \ldots 60 \mathrm{~s} / \mathrm{u}$	$10 \mathrm{~ms} / \mathrm{u} \ldots 60 \mathrm{~s} / \mathrm{u}$	$20 \mathrm{~ms} / \mathrm{u} \ldots 60 \mathrm{~s} / \mathrm{u}$

Detectors

detect-TYPE	
FARAD	Faraday collector, EP 422
SEM	SEM (type configurable), EP 422
ION-CNT	Ion counter, CP 400 / IC 421
EXTERN	External analog input of the QC 422
PIRANI	Pirani
PENNING	Cold cathode
A-INPUT	Analog signal via AI 421 module

Measurement ranges and
resolution

Detector type	Meas. ranges	Modes	Resolution
FARAD,SEM	$10^{-12} \ldots 10^{-5} \mathrm{~A}$ fsd	FIX- and AUTO- Range	16 bit * (per range)
EXTERN	GAIN $1: \pm 10.240 \mathrm{~V}$ GAIN 10: $\pm 1.024 \mathrm{~V}$	FIX-Range	16 bit *
ION-CNT	$10-2 \ldots .108 \mathrm{cps}$, meaning full use up to 106...107 cps	AUTO-Range	in mass-MODE: SAMPLE: 1/DWELL STAIR: 2u/SPEED SCAN: STEPS/SPEED

*) Further increased by averaging
Analog filter

Type	Two-stage lowpass, effective for electrometer and external input
Filter time constant	automatic or selectable in eight steps: $18,85,400 \mu \mathrm{~s} / 1.7,8,40,180,800 \mathrm{~ms}$

Filter step response

τ_{63} : Filter time constant
Settling time to $\pm 1 \%$:

$$
\mathrm{t}_{\mathrm{s}} \approx 4 \times \tau_{63}
$$

Digital filter

NORMAL (N)
FIR (F)
AVERAGE

Low pass (average value)
Finite Impulse Response
Average formed across several measurement cycles

Ion sources	400 Also refer	Also refer to p. 12
	Types Axial, cros	Axial, cross beam, grid, sputter process monitor, Spec+, Spec-
	Parameter sets 4 per ion s	4 per ion source
	Potentials V1 ... V9	V1 ... V9
	125 Also refer	Also refer to [4]
	Types Axial, cros	Axial, cross beam, grid, sputter process monitor
	Emission Standard:	Standard: 0.07 ... 2 mA ; Degas: $0.7 \ldots 20 \mathrm{~mA} / 500 \mathrm{~V}$
Switching functions	trip-TYPE: ABS	2 absolute switching functions per channel
	trip-TYPE: HYST	1 hysteresis switching function per channel
	Reaction time with DO 420A	$<1 \mathrm{~ms}$ after measurement is completed
RS-232-C interface	Detailed description	Also refer to [2]
	Measured data buffer	256 kB
	Protocol	ASCII or binary protocol (according to SECS-1 standard) 1 start, 8 data, 1 stop bit, no parity
	Connector	9 pin D-sub, see p. 19
	Baud rate	300*, 1200, 2400, 4800, 9600, 19200 baud
	Cable length	$\leq 15 \mathrm{~m}$, shielded for baud rate 19200 baud $>15 \mathrm{~m}$, shielded at reduced baud rate
	*) Only in conjunction with ASCII protocol	
LAN interface	Type	ARCNET ${ }^{\text {® }}$ with fiber optics
	Connection	JIS F07 / TOSLINK
	Type of fiber	PCF 200/230 or 200/300 or APF 980/1000 $\mu \mathrm{m}$
	Distance	See p. 20
	Baud rate	2.5 Mbit/s
	Wavelength	800 nm
	Length of fiber-optic conductor	0...1000m
	Transmission distance	$3000 \mathrm{~m}_{\text {max }}$ (cascaded)

Connections on QC 422

Connector ctrl

View towards QC
D-Sub, 9-pin female

Analog output of the electrometer signal
$0 \ldots \pm 10,24 \mathrm{~V}, \mathrm{R}_{\text {out }}: 2 \times 200 \Omega$, short-circuit proof
Analog input in place of electrometer signal.
$\pm 10,24 \mathrm{~V}$, common mode signal: $\pm 2 \mathrm{~V}_{\text {max }}, \mathrm{R}_{\text {in }}=2 \times 50 \mathrm{k} \Omega$ see detect-TYPE:EXTERN page 37
Input for ext. measurement cycle start TTL, int. pull-up $4.7 \mathrm{k} \Omega$ to +5 V . see cycle-TRIG page 36
Input for filament and SEM protection TTL, int. pull-up $4.7 \mathrm{k} \Omega$ to +5 V . see config-CTRL/SEM+FIL page 35

sync

Trigger signal for recording instrument
TTL, $R_{\text {out }}>1 \mathrm{k} \Omega$

elm

see above
connector ctrl: ELM OUT
mon (Monitor)
Analog output of the measured value after digital processing.
$0 . . . \pm 10,24 \mathrm{~V}$
$R_{\text {out }}: 2 \times 200 \Omega$, short-circuit proof

scan

Analog mass number signal $0 \ldots+10,24 \mathrm{~V}$
$\mathrm{R}_{\text {out }}$: $2 \times 200 \Omega$ short-circuit proof Laboratory sockets, $\varnothing 2 \mathrm{~mm}$

QMH/QME

Connector for QMH 400/410 or QME 125

LAN

> Fiberoptic network interface for high transmission rates and long distances

TOSLINK TODX 296, duplex Typ JIS F07

View towards QC

RS 232
Serial interface, see p. 19

3.6 IS 420 Ion source supply

Slots
No. of IS 420 per unit Supply Fuses

Filament supply
Filament modes
Protection
Emission normal
Emission Degas
Signal SPEC SRC ON
Ion source cable Weight

5
max. 1
$5 \mathrm{~V} / 0.6 \mathrm{~A} ; \pm 24 \mathrm{~V} / 2 \mathrm{~A}$ (2.4 A with Degas)
F1, F2 See p. 56
$0 . . .10 \mathrm{~V} / 5 \mathrm{~A}_{\max } / 50 \mathrm{~W}_{\max } \quad$ with Fil1+2: $1.4 \ldots 2 \mathrm{~V}$ on Fil2
1/2/1+2 (1 in operation, 2 preheated)
$0 . .5 \mathrm{~A}$ Resolution 10 mA
$0 . .2 \mathrm{~mA} \quad$ Resolution $10 \mu \mathrm{~A}$
$0 . . .20 \mathrm{~mA}$ Resolution 0.1 mA
$23 \mathrm{~V} / 70 \mathrm{~mA}$
$R_{i}=110 \Omega$
Connector PEEK $+260^{\circ} \mathrm{C} \quad$ Cable SIR $-25 \ldots+180^{\circ} \mathrm{C}$
1.45 kg

With ion src- TYPE:SPEC \pm and EMISS:OFF SPEC SRC ON becomes active. A relay for changing over the ion source lines can be actuated.

Connector towards		QMA GND	9	Filament common
IS 420	2	SPEC SRC RET	10	V4, Field axis
-	3	V6, Deflection inner	11	V0, Ref.Gnd
(2) (1) (1) (1)	4	V3, Focus	12	Screen
$(($ (3) (3) (1) (9) $)$	5	V9, Wehnelt	13	V8, Reserve
(4) (14) (5) (8)	6	V5, Extraction	14	V1, Ionref
$\square^{(5)}$ (6)	7	Filament +	15	SPEC SRC ON
	8	Filament - / Cathode	16	V7, Deflection oute

	Electrode name	Ref. direction	Range $[\mathrm{V}]$	Increm. $[\mathrm{V}]$	Current $[\mathrm{mA}$ $\max]$	Degas potential to V0 [V]
V1	IONREF	$\mathrm{V} 1-\mathrm{V} 0$	$0 \ldots 150$	1	± 2	+550
V2	CATH	$\mathrm{V} 1-\mathrm{V} 2$	$0 \ldots 125$	0.5	+2	+7
V3	FOCUS	$\mathrm{V} 1-\mathrm{V} 3$	$-30 \ldots+30$	0.25	± 2	+550
V4	F-AXIS	$\mathrm{V} 1-\mathrm{V} 4$	$0 \ldots 60$	0.25	± 0.5	0
V5	EXTRACT	$\mathrm{V} 1-\mathrm{V} 5$	$0 \ldots 450$	2	± 0.1	0
V6	DEF-I	$\mathrm{V} 1-\mathrm{V} 6$	$0 \ldots 450$	2	± 0.1	0
V7	DEF-O	$\mathrm{V} 1-\mathrm{V} 7$	$0 \ldots 250$	1	± 0.1	0
V8	---	$\mathrm{V} 1-\mathrm{V} 8$	$-125 \ldots+125$	1	± 0.1	0
V9	WEHNELT	$\mathrm{V} 2-\mathrm{V} 9$	$0 \ldots 60$	0.25	± 0.1	+7

DANGER

The external voltage source for V 0 must be reliably limited to $2 \mathrm{~mA}_{\max }$ and isolated for 750 V .
The relay connected to SPEC SRC ON and SPEC SRC RET incl. lines must be isolated for 750 V and be protected against accidental contact.

3.7 EP 422
 Electrometer

3.8 CP 400 Ion counter preamplifier

Interface to
Voltage supply
Output
Input impedance
Input connector
Output connector
Temperature
Weight

QMH 400/410, QME 125
$\pm 16 \mathrm{VDC}, \pm 0.2 \mathrm{~V} / 10 \mathrm{~mA}_{\max } /$ ripple 10 mV max $\pm 10 \mathrm{~V} / 2 \mathrm{~mA}_{\max }$ $100 \mathrm{k} \Omega$
Type TNC D-Sub 9-pin Operation: $0 \ldots 50^{\circ} \mathrm{C}$, Storage: $-40 \ldots+70^{\circ} \mathrm{C}$ 150 g

Input	Installed directly on SEM feed-throughs of the QMA Pulse width $10 \mathrm{~ns}_{\text {typ }}$ / pulse height $1 . . .5 \mathrm{mV}$ Impedance 50Ω / double pulse resolution $\leq 20 \mathrm{~ns}$ Protection against arcs in SEM with HV 420/421, QME 125			
High voltage	SHV connector HV+ and HV- HV+: 6.7 kV to GND HV-: 6 kV to GND SEM: 3.5 kV between HV+ and HV-			
Output	ECL level complementary			
Discriminator threshold	Control voltage LEVEL+ to LEVEL- $0.1 . .1 \mathrm{~V}$ corresponds to pulse height $1 . . .5 \mathrm{mV}$; common mode $\pm 0.5 \mathrm{~V}_{\text {max }}$			
QC connector	Pin 1	QMA-GND	Pin 5	$\mathrm{V}+$ (+12...15V / 0.12 A)
D-Sub 15 male	2	Identification	6	LEVEL-
	3	OUT-	7	LEVEL+
	4	OUT+	8	V-(-12..15 V / 0.05 A)
			9... 15	not connected
Weight	0.5 kg			

3.9 HV 420 High voltage supply

3.11 DI 420
 Digital Input

Slots 2

Number per unit
Supply
Fuse F1
SEM voltage HV-
Admissible load Internal resistance

Settling time HV connector

HV test connection
Potential isolation Weight

Slots
Number per unit
Supply
HV connector
SEM voltage HV-/HV+
Admissible load
Settling time
CD voltage to GND
Admissible load
Bias voltage HV-

Test terminals
Weight
${ }^{1)}$ In SPEC+ mode

Slots
Number per unit
Supply
Number of inputs
Input signals
Switching threshold
Insulation
Protection
Connector
Weight

max. 1
not simultaneously with HV 421
5V / 0.4 A ; +24V / 0.15 A ; -24 V / 0.05 A
See p. 56
0...-3500 V Resolution 1V, ripple $<10 \mathrm{mV}$ pp $15 \mathrm{M} \Omega \quad$ Current limitation $<1 \mathrm{~mA}$

620 k Ω
0.8 s to 0.1%

SHV

1 V pro 1 kV
$0.5 \mathrm{~V}_{\text {max }}$
0.42 kg

3
max.
not simultaneously with HV 420
$5 \mathrm{~V} / 0.2 \mathrm{~A} ;+24 \mathrm{~V} / 0.2 \mathrm{~A} ;-24 \mathrm{~V} / 0.2 \mathrm{~A}$
SHV
$0\left(-750^{1}\right) \ldots-3500 \mathrm{~V}$ Resolution 1V, ripple $<10 \mathrm{mV}$ pp
$17 \mathrm{M} \Omega \quad$ Current limitation 0.8 mA
$<0.7 \mathrm{~s}$ to 1%
-6300 V Adjustable -4.7...-6.4 kV Ripple $<10 \mathrm{mV}$ pp

Signal ground from QMA via HV cable
$R_{i}=2 \mathrm{k} \Omega$
Between chassis and QMA-GND
$100 \mathrm{M} \Omega \quad$ Current limitation $<0.5 \mathrm{~mA}$
+3.1/-3.1 kV For SPEC-/ SPEC+ adjustable 2.4...3.2 kV
1 V per $1 \mathrm{kV} \quad \mathrm{CD}$ Test also for HV-

3.12 DO 420A Digital Output

3.14 OH 421
 Optical Hub

3.13 AI 421
 Analog Input

RET0.. 4 / 5... 9 / 10... 15 are internally connected, common negative poles of the 3 insulated outputs groups. RET15 has no pin of its own.

Slots
Number per unit
Supply
Inputs
Measurement range
Resolution
Accuracy
Measurement interval
Protection
Insulation
Connector
Weight
J1/J2 pin assignment viewed from outside

1
max. 1
5V / 1 A
16 , differential, $\mathrm{I}_{\text {in }}< \pm 150 \mathrm{nA} @ 70^{\circ} \mathrm{C}$
-10.24...+10.235 VDC, linear -10.0...+10.0 V
12 bit monotone
$\pm 0.1 \%$ FSR
40 ms for all 16 inputs
70 V to AGND, max. 8 inputs simultaneously
$30 \mathrm{~V}_{\text {eff }} / 60$ VDC between AGND and GND
2, 8 inputs each, 32-pin DIN 41612 type C/2
0.3 kg

Example: Connection to input AIN3

Analog ground AGND must be connected to an admissible potential (see above "Insulation"), preferably to ground.
The cable must be shielded. Ground the shield, but not to AGND.
Twisted-pair conductors for each input provide the best signal-to-noise ratio. Open inputs produce unpredictable values.

Slots	1
Number per unit	any
Voltage supply	$+5 \mathrm{~V} \pm 2,5 \%, 200 \mathrm{~mA}$ typical
Connection points	5
Optical interfaces	See page 10
Weight	0.17 kg

4.1 QMS/QMI 422

4.2 Overall system

DANGER

Before you connect the equipment make sure that the line voltage corresponds to the specifications on the nameplate.
A 3-conductor power cable with protective ground must be used.
The power outlet must have a protective ground contact.
Extensions without protective ground conductor are inadmissible.
To ensure continuity of the protective ground, always connect the power cable before all other cables. Conversely, unplug all other cables before the power cable.

Do not yet switch on the equipment!

WARNING

In rack installations the temperature inside the rack must not exceed $40^{\circ} \mathrm{C}$. Ensure adequate air circulation.
The air filters inside the unit should be periodically checked and serviced (refer to page 55)
In desktop installation the air should be able to enter through the lateral inlets and exit through the rear panel slots without obstruction.

Install peripheral components such as the analyzer, QMH 400/410, QME 125 etc. in accordance with the information in the respective user's guides.
All components involved must be grounded to a single point. Utilization of a single power distributor is recommended. The only exception is the computer, but only if it is connected to the QC 422 by means of a fiber-optic link.

Skilled personnel

Make sure that the QMA, the vacuum chamber and the entire equipment is always connected to the protective ground.
Hazardous voltages up to 600 V are present on the QMA If this unit can be touched by the user when the vacuum system is open, additional protection is required, e.g.:

Mech. protection against contact
Forced disconnection of the QMS/QMI 422 line voltage by means of a door contact

The electrode system of the QMA must not be subjected to hazardous exte rnal voltages (from contact, arcing, plasma, ion or electron beams, etc.). If such danger hazards in the vacuum system appropriate protection measures must be taken there (arrangement, shielding, grounding, etc.) that reliably pr eclude such influences. In addition the QMS/QMI 422 must have a permanent ground connection (no plug!). On the QMS 422 the ground terminal is located behind the power inlet, on the QMI 422 there is an M4 thread on the rear panel. Prepare this ground connection from yellow/green stranded copper wire:
$2.5 \mathrm{~mm}^{2}$ if mech. protected (according to DIN VDE 110 T540)
$4.0 \mathrm{~mm}^{2}$ if unprotected
Also refer to the standards applicable to your system.

Skilled personnel

When the QMA is in operation, hazardous voltages up to 600 VDC are present. Under unfavorable conditions other built-in components in the vacuum chamber (e.g. gauge heads) can be subjected to this voltage. If as a result such components become dangerous to touch (also take into consideration the lines and the connected equipment!), they must be arranged or protected in such a way that no contact, no arcs, and no charge carrier flow can occur.

4.3 EP 422

4.4 CP 400

Connect the EP 422 to the corresponding connector on the QMA. Position it in such a way that it does not touch the surrounding connectors and firmly tighten the knurled nut.
Connect the control cable to the EP connector of the QME 125 (see p.19) or the ep1 or ep2 connector (see p.18) of the QMH 400. Lock the connector with the slide.
For optimum signal stability the EP 422 must be protected from vibrations, temperature fluctuations, high temperature, humidity and strong magnetic alternating fields.
The Teflon cable (max. $200^{\circ} \mathrm{C}$, see p.56) allows remote operation if the temperature on the QMA is too high. The EP 422 must be mounted outside the hot area (M3 threads on the housing). The cable must not be subjected to vibrations. Increased noise levels must be expected.

The same applies for the QME 125-1 with 6 m cable length, however the maximum cable temperature is $70^{\circ} \mathrm{C}$.

STOP DANGER

The CP 400 may not be operated with a high voltage supply that can deliver hazardous voltages or currents.
Switch the unit off and detach all cables before you open the cover.
Operation of the equipment with the cover removed is not allowed.

IF3 Note

The inside of the CP 400 may not be touched or contaminated. Finger smudges can cause noise pulses or even arcing.
Remove the SEM connector plate of the QMA, see [5], [6].
Remove the 6 screws A and the cover of the CP 400.
Unfasten the 3 screws C so that the full cross-section of the sockets is exposed. Caution, do not lose the screws!
Carefully slide the CP 400 over the feedthroughs; the latter must not be stressed because they can break!
Fix the CP 400 with the 4 screws B.
Tighten the 3 screws C.
Fasten the cover with all 6 screws A including washers.
For conversion to EP 422 operation perform the above steps in reverse order.

4.5 Cabling with QMA 400

1. Faraday cup Configuration config-SYSTEM-DETECT:FARAD

Module	Connector	Connection	$1[\mathrm{~m}]$	Module	Connector	Comments
QC422	QMH	control cable QMH	3	QMH	(QC)	Optional extension 7m
IS420	QMA	Ion source	3	QMA	IS	or 10m
QMH	RF+ RF-	Radio frequency	0.7	QMA	RF A RF B	Polarity see test report
QMH	FA	Field axis	0.7	QMA	FA	
EP422	Input	Meas. signal	---	QMA	EP(FARAD)	
	---	control cable	0.8	QMH	ep1/farad	

2. SEM 217, HV 420 or HV 421 In addition to 1. Configuration config-SYSTEM-DETECT:SEM

Module	Connector	Connection	I $[\mathrm{m}]$	Module	Connector	Comments
HV42x	HV-	High voltage	3	QMA	HV-	or 10 m
HV421	HV +	short SHV	---	---	--	
	CD	remains open				
---	---	short HV	---	QMA	HV+	
EP422	Input	Meas. signal	---	QMA	EP(SEM)	
	---	control cable	0.8	QMH	ep2/sem	
		short TNC	---	QMA	EP(FARAD)	if only 1 EP

3. SEM 218 (CD-SEM) In addition to 1. Configuration config-SYSTEM-DETECT:CD-SEM

Module	Connector	Connection	$\mathrm{I}[\mathrm{m}]$	Module	Connector	Comment
HV421	CD	High voltage CD	3	QMA	CD	or 10 m
	HV-	High voltage	3	QMA	HV-	or 10 m
	HV +	short SHV	---	---	--	
EP422	Input	Meas. signal	---	QMA	EP(SEM)	
	---	control cable	0.8	QMH	ep2/sem	
		short TNC	---	QMA	EP(FARAD)	if only 1 EP

4. SEM 217, HV 420

 and ion counterIn addition to 1. Configuration config-SYSTEM-DETECT:SEM

Module	Connector	Connection	I [m]	Module	Connector	Comments
HV420	HV-	High voltage	3	CP400	HV-	or 10 m
---	---	short SHV	---	CP400	HV+	
		shrot TNC	---	QMA	EP(FARAD)	if no EP
QC422	CP	control cable	3	CP400	QC	or 10 m

5. SEM 218, HV 421 and ion counter

In addition to 1. Configuration config-SYSTEM-DETECT:H-SEM

Module	Connector	Connection	$\mid[\mathrm{m}]$	Module	Connector	Comments
HV421	CD	remains open				
	HV-	High voltage	3	CP	HV-	or 10 m
	HV	High voltage	3	CP	HV +	or 10 m
		short TNC	---	QMA	EP(FARAD)	If no EP
QC422	CP	control cable	3	CP400	QC	or 10 m

4.6 Cabling with QMA 125

1. Faraday cup

2. Channeltron

3. 90° SEM
4. 90° SEM and ion counter

4.7 RS-232-C interface

In addition to 1. Configuration config-SYSTEM-DETECT:CH-TRON

Module	Connector	Connection	$1[\mathrm{~m}]$	Module	Connector	Comments
QME	HV -	High voltage	0.3	QMA	HV -	ev. 6 m

In addition to 1. Configuration config-SYSTEM-DETECT:SEM

Module	Connector	Connection	$I[\mathrm{~m}]$	Module	Connector	Comments
QME	HV -	High voltage	0.3	QMA	HV -	ev. 6 m
EP422	Input	Meas. signal short TNC	---	QMA	EP(SEM) EP	in SEM mode
EP422	Input	Meas. signal short TNC	---	QMA	EP EP(SEM)	in Faraday mode
	---	control cable	0.8	QME	EP	

In addition to 1. Configuration config-SYSTEM-DETECT:SEM

Module	Connector	Connection	$\mathrm{I}[\mathrm{m}]$	Module	Connector	Comments
QME	HV -	High voltage	0.3	CP	HV -	ev. 6 m
		short SHV	---	CP	HV +	
QC422	CP	Ion counter	3	CP	QC	
EP422	Input	Meas. signal	---	QMA	EP	
		short TNC	---	QMA	EP	without EP422
d.o	---	control cable	0.8	QME	EP	

4.8 LAN interface

Configuring the transmission distance

On the QC 422 check the setting of jumper X20 and correct it, if necessary. Installation/removal of QC 422 see p .23
X20 determines the Transmission power, it is determined by the receiver of the remote station and the type of fiber-optic (FO) conductor..
The factory default setting medium provides a broad compatibility range when old and new FO modules are mixed.

Procedure:

Determine the length and type of the FO conductor (glass fiber PCF or plastic fiber APF).
Determine the FO module types to be interconnected:
Modules with serial number:W.... or higher ("W" is increased annually) are equipped with the new FO module type (applies to all component types)
In case of doubt (e.g. after a module has been replaced) open the unit and read off the FO module type, that is, No. TODX 29? on the FO connector.
This is necessary because the receivers of earlier LAN modules can be overdriven in short distances, with the new modules this is no longer the case.
Set jumper X20 on the transmitter side as shown in the table and the diagram:

Setting X20	New FO module TODX 296	Old FO module TODX 294	Old PC interface with SMA connectors
short medium *) long	$0 . . .500(0 . . .1 .4) \mathrm{m}$ 0... 750 (0...2.2) m 0... 1000 (0...3.0) m	$\begin{aligned} & 0 \ldots 150(0 \ldots 1.2) \mathrm{m} \\ & 0 \ldots 400(0 \ldots 2.0) \mathrm{m} \\ & 400 \ldots 700(0 \ldots 3.0) \mathrm{m} \end{aligned}$	not allowed $0 . .50 \mathrm{~m}$ $0 . . .300 \mathrm{~m}$

These values apply to PCF glass fibers, the values in (...) for APF plastic fibers.
*) Factory setting

Cabling PC-QMG
Install the PC interface board into the PC according to its Operating manual. Remove the protective caps from the fiber optic connectors and establish the fiber optic link.

WARNING

Do not kink the fiber optic conductor. The minimum bending radius is 15 mm !

OH 421 Installation/removal, see p.23, there is no address setting.
Settings:

Jumper	Function	Purpose
$\mathrm{X12:} \mathrm{IN} \mathrm{*)}$	Central hub	First hub directly linked to the PC FO connectors X1...X5 are peer-to-peer
$\mathrm{X} 12:$ OUT	Expansion hub	Connected to other hub Connect X1 always in the direction toward the PC! FO connectors X2...X5 are peer-to-peer
X6...X10	Transmitter distance setting for connectors X1...X5 For FO lengths refer to table on page 20	

*) OH 421 No. BG 442 455-T without X12 can only be used as central hub.

X7...X10 same as X6

Network

[1/ु Note

Unused FO connectors should always be closed off with a dummy plug to prevent disturbance by parasitic light.

Central hub Expansion hubs

QC 422, QC 421, QMS 200, OH 421, OHA 200, OH 200 and OPA 200 are compatible.
Note the technical specifications concerning FO conductor lengths and total transmission distance.
Set up all transmitters according the table on page 20.
The 1st hub must be configured as the central hub, all others as expansion hubs.

4.9 Installing/removing options

Options are factory installed if they have been ordered together with the system. They can also be installed in the field at any time.

Skilled personnel

Work on open equipment may only be performed by specialists.
Switch off the unit before any manipulations on the equipment. Wait 10 s and detach all cables (power cable last). For commission perform these steps in reverse order.

WARNING

Work may only be performed on ESD protected benches while observing appropriate working methods.
The modules should always be stored in antistatic bags.
Defects caused by the disregard of this warning will void the warranty.

CS 422 1. Detach the power plug on the QMS 422, wait 10 s
2. Remove the cover panel
3. Unfasten 6 screws of the front panel.
4. Detach the electrical connections of the front panel:

- Ground connection
- Flat-pin terminal on the power switch (note the pin assignment)
- LED connection of the bus board (connector J20)

5. Establish the electrical connections on the CS 422:

- Ground connection (sequence: head of screw, lock washer, plain washer, cable lug, plain washer
- Wiring to the power switch, same pin assignment as before.
- Flat cable to bus board (connector J20)

6. Fasten the front panel
7. Mount he cover panel

Bus modules

[1) Note

To prevent damage to the connectors the module to be installed must be accurately pushed into the circuit board guides.
Firmly tighten the screws. Loose screws cause malfunctions.

DANGER

As hazardous voltages are present inside the unit empty slots must be closed off with blanking plates (see p. 56).
Never connect or detach cables while the equipment is switched on.
Never install or remove modules when the equipment is switched on. After power off wait 10 s before you touch or move any modules.
Always tighten the screws firmly!
Before installation check the module address according to the specifications of the individual modules.

The QC 422 quadrupole controller can be expanded with the AO 421 analog output or the IC 421 ion counter.

- Disconnect power cable, wait 10 sec .
- Install/remove QC 422 as described above
- Remove connector cover(s) (1) according to the option to be installed.
- Install the AO/IC 421 as shown in the illustration. The hexagon pins 4 are installed without washers and secured with Loctite, if possible.

IS 420
Check address setting:
Address 175 500(octal)
Jumpers A3,4,5,7,10 inserted on IC 420

HV 420
Check address setting:
Address 175 400(octal)
Jumpers A1,2,3,4,5,6,7,10 inserted

HV 421
The address 175404 is fixed. Jumpers: X6 all OUT, X7 IN, X8:2-4 connected. Jumper plugs are inserted on the SHV terminals, depending on the operating mode of the SEM, see page 18.

Setting the CD voltage

The CD or bias voltage can be set with trimmer R4. Measure the value with a DVM on CD-test. Before making any adjustments switch off the unit and remove the HV 421. One counterclockwise rotation reduces the CD voltage by approx. 150 V or the bias voltage by approx. 80 V . Reinstall, re-measure and correct the setting, if necessary. Do not change the settings of any other trimmers!

DI 420
Up to 2 DI 420 can be installed.
Address setting: Jumpers A6, 9, 10 inserted

$$
\text { DI } 420 \text { \#1 } 174600 \text { (octal), rotary switch position } 0
$$

DI 420 \#2 174 604(octal), rotary switch position 1
For connecting the inputs see technical specifications p. 14
DO 420A Up to 3 DO 420A can be installed. (DO 420 is not suited)
Address setting: Jumpers A9,10 inserted
DO 420 \#1 174 700(octal), rotary switch position 0
DO 420 \#2 174 704(octal), rotary switch position 1
DO 420 \#3 174710 (octal), rotary switch position 2
For connecting the outputs see technical specifications p. 15
One Al 421 can be installed (AI 420 is not suited)
Jumper setting:
Jumpers: A6, 7, 9, 10, B, C, D, E inserted
Address 174400 (octal), rotary switch position 0
For connecting the inputs see technical specifications p. 15
PI 420 / PE 420 PI 420: Address: 174 000, see also [9]
PE 420: Address: 174 100, see also [10]

5 Description

5.1 Operator console

Contrast setting

In the basic version of the QMS 422 and on the QMI 422 the front panel contains only a power switch and the corresponding LED.
The CS 422 operator console is available as an option. It can easily be retrofitted and is highly recommended for learning purposes, e.g. for software development. Even if you do not have a CS 422 you should carefully read the following information. This will enhance your understanding also in computer mode.

After a function has been selected, e.g. (mass key) the function (SETUP MASS), its parameters (here MODE, SPEED...RESOL) and parameter values and the measured value of the selected channel are displayed.

Parameter menus depend on the parameter state; in the picture below a changeover to MODE:SAMPLE has been made

MODE	DWELL	MASS	AUERAGE	RESOL	
SAMPLE	1 s	14.03	-	OH	

In computer mode the parameters are displayed for approx. 30 s when a key is pressed. Input operations are disabled. Subsequently the measured value display reappears automatically.

Measured value display

After the start (run key) of the measurement cycle the measured value of the momentary measurement channel is displayed. In multichannel mode (cycleMODE:MULT) the progression of the channels can be seen (possibly with gaps in fast processes)

In computer mode the display is updated for monitoring purposes.

Softkeys

Choose the parameter to be entered with one of the 6 softkeys. After the key has been pressed the parameter value flashes.
If the parameter has only two values (e.g. ON/OFF or $\times 1 / \times 10$) you can change it by simply pressing the soft key again.
Parameter values are entered or changed via the numeric keypad.

Number pad

0	9	numeric keys	+/-	change sign
		decimal point	exp	exponential entry
	del	cancel and return to	\square	Accept new value (Enter)

Change parameters in small increments ...
... and in large increments. When the keys are pressed continuously the entire value range is scanned. The new value becomes effective without \square

Function groups The operation is subdivided into four function groups:

5.2 Functions

Channels group

Their function is described in the next Chapter.
Each group comprises several function keys for calling a function (e.g. mass in the channels group). Each function contains up to 6 parameters.

Parameters for operating the mass filter and for ion detection can be stored in up to 64 channels. When the measurement is performed the channels are processed sequentially and cyclically.

Control keys for all parameters of a measurement channel
select

detect
Determines the signal source (detector, e.g. Faraday or SEM).

	mass	Mass scan parameters such as mass number, speed, etc.
	amplif	Measurement amplifier parameters, measurement ranges, Autorange/Fixrange....
	aux	Enable or skip the channel during the measurement operation and copy parameter sets to different channels.
	output	Parameters for analog output of measured values, e.g. linear or logarithmic.
	trip	Parameters of the switching functions of each measurement channel.
General group		Keys for general settings such as configuration, initialization, maintenance and service, and processing of error messages.
	di/do	Operation of DI-/DO-Bits.
	config	Input and display of system and equipment configuration.
	error	Error messages are displayed here in detail.
ion source group		ion source
		\square \square Parameters of the selected ion source set. The set is chosen under operation-ion src and displayed here.
	emiss	400 Emission current and filament protection
	v1...v6	400 Ion source voltages V1...V6.
	v7...	400 Ion source voltages V7...V9.
operation group		Control keys for operation of: - SEM - ion source - measurement process
	sem hv	sem hv defines the global SEM high voltage. It is effective in all channels for which no individual voltage is specified.
	sem	Switch SEM high voltage on/off
		The sem LED is on when the high voltage is switched on and flashes when it is inhibited by the EXT-PROT signal on the ctrl connector.
	ion src	400 Ion source mode: Filament selection, degas, etc.
		The ion source parameters are channel-independent and are selected as a complete set. This allows fast parameter change.
		The ion source parameters of the set belonging to the active filament can be reviewed in the ion source group.
		125 Control of ion source supply for QME 125
	filam	Switch filament on/off
		The filam LED is on when the emission is on and flashes when it is inhibited by the EXT-PROT signal on the ctrl connector.

cycle

run/halt

5.3 Parameter list

ADJ-TYP (cycle)

ADJ-TYP	Type of search with cycle-FUNCT:ADJUST
COARSE	Coarse search, see p.44
FINE	Fine search, see p. 45.

AI-CH	Only with detect-TYPE:A-INPUT
$0 \ldots .15$	AI 421 channel number to be measured

AO-CH	Not with detect-TYPE:PIRANI, PENNING, A-INPUT
$1 \ldots 12$	Output channel of AO 421 or IC 421 for the measured value of the selected channel.
NONE	No analog output assigned

In halt condition the outputs are set to 0 V , except when they are seized by computer outputs.

AO-MODE (output) Format selection for analog output to AO / IC 421 and mon, see p. 46 .
Electrometer in Fix-Range:

AO-MODE	amplif-MODE:FIX and detect-TYPE:FARAD,SEM,EXTERN
LIN	Linear output in selected measurement RANGE
LOG 3D	Logarithmic, 3 decades, $31 / 3 \mathrm{~V} /$ dec. within RANGE

Electrometer in Auto-Range:

AO-MODE	amplif-MODE:AUTO, AUTO-D and detect-TYPE:FARAD,SEM
LIN	Linear output within range selected with O-RNG
LOG 3D	Logarithmic, 3 decades, $31 / 3 \mathrm{~V} /$ dec. within range selected with $O-R N G$
LOG 8D*	Logarithmic, 8 decades, $1.25 \mathrm{~V} /$ dec. across all ranges

${ }^{*}$) With mass-MODE:SCAN or PEAK and SPEED < $100 \mathrm{~ms} / \mathrm{u}$ with STAIR $<10 \mathrm{~ms} / \mathrm{u}$ a changeover to 3 decades occurs automatically
Ion counter:

AO-MODE	LOG-DEC	detect-TYPE:ION-CNT
LIN	----	Linear output within the range selected with O-RANGE
LOG	$3 D E C$	Logarithmic, 3 decades, $31 / 3 \mathrm{~V} /$ dec. within the range selected with O-RANGE.
LOG	10 DEC** $^{\text {LO }}$	Logarithmic, 10 decades, $1 \mathrm{~V} / \mathrm{dec} .10^{-1} \ldots 10^{8} \mathrm{cps}$

*) With mass-MODE:SCAN or PEAK and SPEED $<50 \mathrm{~ms} / \mathrm{u}$ a changeover to 3 decades occurs automatically.

AVERAGE (mass)

Choose measurement cycle mode or offset or adjustment measurement. Input of the corresponding parameters.

START / STOP of the measurement defined under cycle.
The mono or multi LED is on while the measurement cycle is running and flashes while waiting for external triggering by the RUN-IN signal on the ctrl connector.
The halt LED is on when the measurement cycle is stopped and flashes if the measurement cycle has been stopped by external triggering.

The parameters below are listed in alphabetic order by name . Notation:

DETECT (config-SYSTEM)
Parameter
of the function possibly subfunction(s)
Additional information on the utilization, the advantages and disadvantages of individual settings can be found in Chapter 6.

Al-CH (detect) AO-CH (output)

decades occurs automatically.				
Moving average across measurement cycles, see p. 42				
AVERAGE	Only with mass-MODE:SAMPLE and detect-TYPE:FARAD,SEM,ION-CNT,EXTERN			
1	No averaging across measurement cycles			
$2,4,8 \ldots$	$\ldots 512,1024$			Number of measurement cycles for forming average
:---				

BAUD (config-CTRL)

BAUD	Only with config-CTRL-MODE:ASCII, BIN and MODEM
$300,1200,2400$	Baud rate of the RS232 interface, can always be set on
$4800,9600,19200$	the CS 422 (300 baud only with ASCII protocol)

BEGIN (cycle)

BEGIN	With cycle-FUNCT:CYCLE and cycle-MODE:MULTI
$0 \ldots 63$	Start channel of the measurement cycle with cycle- MODE:MULTI

See DIG-OUT

CALIB	Calibration factor for measured value.
$\pm 1 E^{10} \ldots \pm 9,99 E^{+10}$	The raw measured value is multiplied times CALIB

Can be used for either normalizing a measured value, e.g. from 7.7 V to 10 V (100\%) or for conversion from [A] to [mbar].
In the following cases multiplication takes place only with the mantissa of CALIB:

- For the computer interface with amplif-MODE:FIX or detect-TYPE:EXTERN and mass-MODE:SCAN or PEAK
- Always for the analog signals on the AO/IC 421 and mon

CATH (v1...v6)
See V2
CLEAR (di/do-DIG-OUT)
CLEAR (error)
See DIG-OUT
Deletes all pending error messages

CLEAR (cycle-FUNCT-OFFSET)

Sets all offset values to zero and consequently disables offset correction

COPY TO CH	Copies parameters of the selected channel to another channel
$0 \ldots 63$	Target channel for copying process SURE?
Confirm copy function by pressing	

COPY TO ALL (aux)
COPY TO SET (ion src)

COPY TO ALL	Copies the parameters of the selected channel to the channels cycle-BEGIN...-END.
SURE?	Confirm copy function by pressing

CP-LEV (amplif)	CP-LEV	Only with detect-TYPE:ION-CNT
	$0.10 \ldots 1.00 \mathrm{~V}$	Response threshold of the CP 400, see p.13
CS 422 (config)	See under TEST	
CTRL (config)	See BAUD, MODE, NODE or SEM + FIL	
CTRL (ion src)	CTRL	Only with ion src-MODE:DEGAS
	STOP	Switch Degas off
	START	Switch Degas on
SURE ?	Confirm Degas activation with \&-	
RUN	Degas switched on	

CYCLES (cycle)	CYCLES	With cycle-FUNCT:CYCLE
	REPEAT (0)	The measurement cycle is repeated endlessly.
$1 \ldots 10^{\prime} 000$	Number of measurement cycles to be executed	

D-EMIS (ion src)

400	D-EMIS	With ion src-MODE:DEGAS
$0.0 \ldots 20.0 \mathrm{~mA}$	Emission current in Degas mode.	

| D-PROT (ion src) $\quad$$\boxed{400}$$\quad D-P R O T$ | With ion src-MODE:DEGAS |
| :--- | :--- | :--- | :--- |
| $0.00 \ldots 5.00 \mathrm{~A}$ | Maximum filament current in Degas mode |

D-TIME (ion src)

$D-T I M E$	With ion src-MODE:DEGAS
$M A N U A L(0)$	Degas runs until stop command is given
$1 \ldots 99 \mathrm{~min}$	Degas duration. The remaining time is displayed.

DEF-I (v1...v6) Deflection inside, see V6
DETECT (config-SYSTEM)

	DETECT	Specification of the existing signal source (ion collector)
	FARAD	Faraday collector
SEM	90° SEM	
400	CD-SEM	90° SEM with conversion dynode
400	H-SEM	High SEM, only with config-SYSTEM-OPTION:CP
125	CH-TRON	Channeltron/Faraday combination

DIG-IN (di/do) Status indication of the DI 420 input bits, not dependent on measurement channel. NEXT switches to the next 32 bits.
DIG-OUT (di/do) Display / manual operation of the DO 420A output bits, not dependent on measurement channel.

BIT	Choose DO bit to be operated
SET	Set DO bit
CLEAR	Clear DO bits
NEXT	Advance to next 32 DO bits

DISP-T (config) See TEST-CS 422
DO-A, DO-B (trip) Assignment of a switching function A or B to any bit of a DO 420A. If several switching functions are assigned to the same bit they are combined in an AND function, see Section 6.14.

DO-A, DO-B	With mass-MODE:SAMPLE or detect-TYPE:PIRANI, PENNING; A-INPUT
OFF	No assignment, output remains high impedance Assignment of the switching functions to the DO 420A output bit

The DO 420A outputs can also be operated manually or via interfaces.

DSP (config)	See TEST	
DWELL (mass)	Measurement time on mass number MASS with mass-MODE:SAMPLE	
	DWELL	detect-TYPE:FARAD, SEM or EXTERN
	$\begin{gathered} 0.5,1,2,5,10,20,50 \mathrm{~ms} \\ 0.1,0.2,0.5,1,2,5,10,20,60 \mathrm{~s} \end{gathered}$	The measured value is determined by averaging across the DWELL time.
	Ion counter:	
	DWELL	detect-TYPE:ION-CNT
	$1 \mathrm{~ms} \mathrm{..}$.	Counting rate = pulse count / DWELL

| E-PROT (emiss) | | |
| ---: | ---: | :--- | :--- |
| EMI-CUR (ion src) | | |
| $0.00 \ldots 5.00 \mathrm{~A}$ | $\begin{array}{l}\text { When the set current threshold is exceeded the filament is } \\ \text { switched off and an error message is output. }\end{array}$ | |
| | OMI-CUR | $\begin{array}{l}\text { Switch between displaying emission current and electrometer } \\ \text { value. }\end{array}$ |
| OFF | Display electrometer value | |
| ON | Display emission current | |

The measurement cycle must be stopped (halt).

EMISS (emiss)	400 EMISS	Emission current set point
	$\begin{gathered} \text { OFF } \\ 0.01 \ldots 2.00 \mathrm{~mA} \end{gathered}$	Emission switched off Emission current
END (cycle)	END	With cycle-FUNCT:CYCLE and cycle-MODE:MULTI
	0... 63	Ending channel of the measurement cycle with cycleMODE:MULTI
EPROM-T (config)	See TEST-CS 422,	TEST-DSP and TEST-QMS
EXTRACT (v1...v6)	See V5	
F-AXIS (v1...v6)	See V4	
FIL1, FIL2 (ion src)	Assignment of an io assignment with $S P$	n source parameter set to filament 1 or 2 . Applies also to the $E E \pm$ (without filament).

FIL1, FIL2	With ion src-MODE:NORMAL
SET $0 \ldots$... SET 3	Assignment of the ion source parameter set

FILAM (ion src) Filament selection for ion sources containing two filaments

400	FILAM	Not with config-SYSTEM-IS-TYP:AXIAL
	1	Filament 1
	2	Filament 2
	1+2	Filament 1 in operation, filament 2 is pre-heated. If filament 1 is defective filament 2 is automatically activated. This results in a brief fading of the emission.

| 125 | FILAM |
| ---: | :--- | | filament select switch on QME 125 [4] set to remote ! | |
| ---: | :--- |
| 1 | Filament 1 in normal operation / 1+2 with DEGAS |
| 2 | Filament 2 |

FILTER (amplif)

Time constant of the analog filter for the electrometer signal

FILTER	With detect-TYPE:FARAD, SEM and EXTERN			
$18 \mu \mathrm{~s}$... 800 ms	Manual setting for special requirements. Choose a filter value that is appropriate to the measuring speed.			
AUTO	The analog filter is SPEED [ms $/ \mathrm{u}$] DWELL [ms]	FILTER	et as follows: SPEED [s/u] DWELL [s]	FILTER
	$\begin{gathered} 0.5 / 1 \\ 2 / 5 \\ 10 / 20 \\ 50 / 100 \end{gathered}$	$\begin{gathered} 18 \mu \mathrm{~s} \\ 85 \mu \mathrm{~s} \\ 400 \mu \mathrm{~s} \\ 1.7 \mathrm{~ms} \end{gathered}$	$\begin{gathered} 0.2 / 0.5 \\ 1 / 2 \\ 5 / 10 \\ 20 / 60 \end{gathered}$	$\begin{gathered} 8 \mathrm{~ms}^{*} \\ 40 \mathrm{~ms}^{* *} \\ 180 \mathrm{~ms} \\ 800 \mathrm{~ms} \end{gathered}$

) Minimum value in RANGE $10^{-11}{ }^{ *}$) Minimum value in range RANGE 10^{-12} With amplif-MODE:AUTO or AUTO-D an optimum filter is automatically used.
With mass-MODE:SAMPLE (MID mode) a fast filter results in faster settling times which means that PAUSE can be shortened.
Signals above the maximum range of $\pm 10.24 \mathrm{~V}$ (e.g. noise) are clipped. In this case the subsequent processing (e.g. averaging) may possibly be incorrect. In critical cases the electrometer signal must be analyzed with an oscilloscope or with Quadstar in mass-MODE:SCAN-N so that it can be optimized.
With mass-MODE:SCAN-F the FIR filter provides for additional filtering.

FIRST (mass)
See TEST-SERVICE
Starting mass number of the mass scan

FIRST	With mass-MODE: SCAN, STAIR and PEAK
0.00 ... max. 2047.99	The maximum value depends on the mass range
The mass number is displayed as a decimal value; internally steps of $1 / 64 \mathrm{u}$ are	
used. At high SPEED the resolution decreases to $1 / 32$ or $1 / 16$, see p.9.	

FOCUS (v1...v6)
F.S.+/ F.S.- (config) FUNCT (cycle)

FUNCT	Measurement cycle mode, can only be changed in halt condition
CYCLE	Normal measurement operation
ADJUST	Adjustment to peak top with mass-MODE:SAMPLE, see 6.12
OFFSET	Offset correction of the EP 422 see p. 39

GAIN (amplif)

GAIN	With detect-TYPE:EXTERN
$\times 1, \times 10, x-1, x-10$	Post-amplification factor for the Extern signal

INIT (config) RESET | Load standard parameters (according to config-SYSTEM) see

RESET	Load standard parameters (according to config-SYSTEM) see p. 57
FACTORY	Load standard parameters set by pressing
SURE ?	Confirm with $\&$, the old parameters are irretrievably lost!

IONREF (v1...v6) See V1
IS-TYP (config)

	IS-TYP	Specify the ion source installed in the QMA.
	AXIAL	Axial ion source
	CB	Cross-beam ion source
	GRID	Grid ion source
	SPM	Sputter process monitor ion source
400	SPEC+	Special ion source positive ions
400	SPEC-	Special ion source negative ions

KEY-T (config) See TEST-CS 422

LEVEL-A, -B (trip)
Threshold values of the switching functions

Threshold values of the switching functions
LEVEL-A LEVEL-B
$1 \times 10^{-24} \ldots .$.
$\ldots \ldots$ TYPE
:---
detect-TYPE:PIRANI,PENNING,A-INPUT

If with TYPE:HYST : LEVEL-A < 1.1×LEVEL-B this minimum hysteresis is automatically set.

LOG-DEC (output) See AO-MODE: ion counter p. 28

MASS (cycle)
With cycle-FUNCT:ADJUST and cycle-MODE:MONO, See below MASS(mass)
MASS (mass) In SAMPLE (MID) mode measurement takes place on this mass number during the measurement time DWELL and the average value of the measurement signal is formed
The measurement resolution is up to 24 bits (mantissa)

MASS	With mass-MODE:SAMPLE
$0.00 \ldots$ max. 2047.99	The maximum value depends on the mass range

MASS-R (config-SYSTEM)
Configuration specification of the existing measurement rage (HF generator)

MASS-R	QME-Typ	MASS-R	QMH-Typ	MASS-R	QMH-Typ
100	QME 125-1	128	QMH 400-1	1024	QMH 410-1
200	QME 125-2	512	QMH 400-5	2048	QMH 410-2
		300	d.o.+QMA 430	340	QMH 410-3

MODE (amplif) Operating mode of the electrometer amplifier

	MODE	With detect-TYPE:FARAD and SEM
	AUTO AUTO-D FIX	Automatic changeover across all measurement ranges, very universal Automatic changeover down to the lower search limit RANGE-L. Manual range selection for fastest measurements
MODE (config-CTRL)	MODE	Controlling interface
	CS 422 ASCII BIN MODEM LAN Each interfa	Console CS 422 RS-232-C in ASCII format RS-232-C in binary format RS-232-C with modem in binary format Arcnet interface ace can switch to itself and thereby interrupt others.
MODE (config)	See TEST-S	SERVICE
MODE (cycle)	MODE	Measurement cycle mode. The cycle is started/stopped with run/halt
	MONO MULTI	Single channel measurement in selected channel Measurement of the channels between BEGIN and END. Channels that are in aux-STATE:SKIP state will be skipped.
MODE (ion src)	MODE	Ion source mode
	NORMAL DEGAS	Normal operation with the parameters defined in the ion source set. Degas mode. The necessary parameters are entered directly.
MODE (mass)	Mass scan mode, for details refer to p. 42	
	MODE	Not with detect-TYPE:PIRANI, PENNING and A-INPUT
	SCAN-N	Normal spectrum from the start mass FIRST across the scan width WIDTH at the speed set with SPEED.
	SCAN-F	Same, with FIR filter.
	STAIR	Spectrum with integer mass jumps
	SAMPLE	Measurement on mass MASS with averaging across DWELL time.
	PEAK-L	Peak search (Level criterion) from FIRST via WIDTH with the speed SPEED. Significant data reduction because only the intensities and mass number of detected peaks are output.
	PEAK-F	Same, with FIR filter.

MONITOR (output) Format of the measured value at the analog output mon

MONITOR	Not with detect-TYPE:PIRANI, PENNING and A-INPUT
LIN / LOG	See AO-MODE
RNG-CODE	Range-Code: E-12=1V.. E-5=8V (only for test purposes)

NEG (config) See TEST-SERVICE
NEXT (di/do) Display next 32 bits with DIG-IN and DIG-OUT
NEXT (error) Next error message, if more than one exists.

NODE (config-CTRL)	NODE	Only with config-CTRL-MODE:LAN
$1 \ldots 255$	ARCNET node address	

OFFSET (config)
OFFSET (cycle-FUNCT)
OPTION (config-SYSTEM)
See TEST-SERVICE
Offset correction, see FUNCT(cycle)

OPTION	Configuration input for CP 400 ion counter preamplifier
NO	No CP 400
CP	CP 400 exists

O-RNG (output) Output-Range of AO 421 and mon, see AO- MODE

$O-R N G$	with detect-TYPE:ION-CNT or amplif-MODE:AUTO, AUTO-D
$E-1 \ldots E+8$	In ion counter mode
$E-5 \ldots E-12$	In electrometer mode

RANGE-L (amplif)

RANGE-L	With amplif-MODE:AUTO-D and detect-TYPE:FARAD or SEM
$E-12 \ldots E-5$	Lower search limit with AUTO-D

RESET (config)

See INIT
RESOL (mass)

400 Setting of the mass peak separation (resolution) $R E S O L$ With detect-TYPE:FARAD, SEM, ION-CNT, EXTERN
OFF (0)

RETURN (....) Return from a submenu to the preceding menu

| SELF (config) | See TEST-SERVICE |
| ---: | :--- | :--- | :--- |
| SELF/CH (config) | See TEST-SERVICE |

SEM-VOLTAGE (sem hv)

Global SEM high voltage. It is valid for all measurement channels for which no individual setting has been defined with detect-SEM:SEM-HV.

SEM-VOLTAGE	Not with config-SYSTEM-DETECT:FARAD

0 ... 3500 V Global SEM high voltage
With High SEM (config-SYSTEM-DETECT:H-SEM) the minimum value is 750 V , see p. 14

SERVICE (config)
See TEST
See DIG-OUT
See FIL1, FIL2
SET (ion src)
SIMUL (config)

SIMUL	Simulation spectrum for test purposes, see p. 40.
OFF	Simulation switched off.
INTERN	Simulation via QC internal measurement path.
EXTERN	Simulation via QC external connection. Only for factory use, additional hardware required.
If no error message exists the warning SIMULATION is displayed.	

SPEED (mass)
Speed for mass scan

SPEED	Not with mass-MODE:SAMPLE or detect-TYPE:PIRANI, PENNING, A-INPUT
$0.5,1,2,5,10,20,50 \mathrm{~ms} / \mathrm{u}$	With detect-TYPE:FARAD, SEM, EXTERN and amplif-MODE:FIX
$0.1,0.2,0.5,1,2,5,10,20,60 \mathrm{~s} / \mathrm{l}$	
$10 \mathrm{~ms} / \mathrm{u} \ldots 60 \mathrm{~s} / \mathrm{u}$	With detect-TYPE:FARAD, SEM, EXTERN and amplif-MODE:AUTO, AUTO-D
$2 \mathrm{~ms} / \mathrm{u} \ldots 60 \mathrm{~s} / \mathrm{u}$	With detect-TYPE:ION-CNT and mass-MODE:STAIR
$20 \mathrm{~ms} / \mathrm{u} \ldots 60 \mathrm{~s} / \mathrm{u}$	With detect-TYPE:ION-CNT and mass-MODE:SCAN and PEAK

STATE (aux)

STATE	Enable or skip a channel in multichannel mode
SKIP	Skip channel.
ENABLE	Measure channel.

STEPS Reduces the number of measured values/u transmitted via the interface with mass-MODE:SCAN to $1 / 2$ or $1 / 4$; this parameter can only be operated via the interface.

SYSTEM (config) From the system configuration defined here the unit determined the possible operating modes and parameter sets.
Expansion with bus modules is detected automatically by the unit.
See sub menus QMA, MASS-R, IS-TYP, DETECT, OPTION.
TEST (config) Test and alignment programs for service purposes.
The individual tests are initiated with the soft keys, endless tests are terminated with del. During a test the word BUSY is displayed, the result in shown in the status line for approximately ten seconds.
CS 422 Test of the CS 422 console with:
DISP-T Endless test of the LC display. After the test has been canceled the Display-RAM test result is displayed.
EPROM-T After the EPROM test the result is displayed and the checksum is displayed at the soft key.
$K E Y-T$ Endless test of the keyboard. Consecutively press all keys to display the corresponding value.
$P R G-N R$ The program number of the installed firmware (program version) is displayed.
$R A M-T$ After the RAM test the result is displayed.

DSP-... Test of the signal processor: EPROM-T, PRG-NR, RAM-T as above
QMS-... Test of the system controller:: EPROM-T, PRG-NR, RAM-T as above
SERVICE Test programs only for factory use
THRESH (mass) With mass-MODE:PEAK-L and PEAK-F or with cycle-FUNCT:ADJUST
Minimum intensity at which a peak is detected by the peak processor and adjust algorithm

THRESH	amplif-MODE:FIX and detect-TYPE:FARAD, SEM or EXTERN
$0.01,0.03,0,1 \ldots 30 \%$ f.s.d	With Fixrange in \% of the full scale deflection
THRESH	amplif-MODE: AUTO or AUTO-D and detect-TYPE:FARAD, SEM
$1 E-15,1 E-14 . \ldots .1 E-8$	With Autorange in [A]

THRESH	detect-TYPE:ION-CNT
$1 E 0,1 E 1 \ldots .1 E 7$	In ion counting mode in counts per seconds [cps]

TRIG (cycle)	TRIG EXT-AUTO
EXT-NORM	Start/Stop is performed via CS 422 or interface. Start on positive slope of the ext. start signal RUN-IN (see p 11). The cycle runs until terminated with halt or the specified number of measurement cycles has been attained.
EXT-SNGL	Start on positive edge of RUN-IN. The cycle runs as long as RUN- IN is high, or until it is terminated with halt or the number of measurement cycles specified with CYCLES has been attained.
Start on positive edge of RUN-IN. The unit must first be armed with run. The cycle runs until it is terminated with halt or the number of measurement cycles specified with CYCLES has been attained.	

TYPE (detect)	TYPE	Selection of signal source, depends on the configuration
	FARAD SEM ION-CNT EXTERN PIRANI PENNING A-INPUT	Electrometer signal from Faraday collector Electrometer signal with SEM Ion counter External analog signal in place of EP 422 signal. Filter and processing functions of the QC 422 are used. Total pressure measurement with Pirani module Total pressure measurement with Penning module Analog signals on AI 421. Filter and processing functions of the QC 422 are not used.
TYPE (ion src)	Changeover to special ion sources. The electrode names are replaced by "V1...V9" and all potentials are made accessible.	
	$x y z$ SPEC+ SPEC-	Normal ion source according to config-SYSTEM:IS-TYP Special ion source, detection of positive ions Special ion source, detection of negative ions. The potentials of the IS 420 and the bias voltage of the HV 421 with config-SYSTEM-DETECT:H-SEM are inverted.
	With SPEC \pm and $E M I S S=0$ the SPEC-SRC-ON signal on the QMA connector of the IS 420 is active. In this way an external relay for changing over the ion source electrodes can be controlled.	
TYPE (trip)	TYPE	e of switching functions (see 6.14)
	OFF $\begin{aligned} & \text { Sw } \\ & \\ & \text { ap }\end{aligned}$	ching function not active. The DO bit is available for other ications.
	$A B S$ A	B are independent switching functions with one threshold value
	HYST $\left\lvert\, \begin{aligned} & \text { A } \\ & \text { the }\end{aligned}\right.$	nd B form a switching function with hysteresis. status changes when upper or lower threshold value is exceeded.
V1... V9	\square The with See	designations appears with ion src-TYPE :SPEC \pm, ndard ion sources the electrode names are displayed. h. data p. 12

WEHNELT (ion src) See V9

WIDTH (mass) Mass scan width of the measurement channel

WIDTH	Not with mass-MODE:SAMPLE or detect-TYPE:PIRANI, PENNING, A-INPUT
$-2047 \ldots+2047$	The maximum value depends on the mass range

Negative WIDTH results in a backward scan. In this way small peaks that are 1 mass above a very large peak can be measured more effectively.

6.1 Initial start up

The following description is applicable to units equipped with CS 422 operator console. They apply analogously also without CS 422.

DANGER

Before you switch on the power make sure that all components have been installed correctly (see Chapter Installation) and that the installation conforms to the technical data, See p. 8 subseq.

The main power switch is located in the lower left-hand section of the front panel. After power on the unit performs a self-test and after a few seconds responds with a beep. Press any key to activate the measurement or parameter display.

$\|$ Note

In complete (factory aligned) systems the values that have been determined as optimal are stored in the controller. Do not modify these, go directly to 6.4.
After a change of the ion source setting, a filament change, replacement of components, etc. the following steps should be performed.

Configuration Configure the unit as follows if the system you are putting into service has not

 been factory aligned.- In the function group general press the config function.
- Choose SYSTEM with the corresponding softkey.
- Press QMA softkey and enter your QMA type with by pressing $\boldsymbol{\wedge}$.
- Press MASS-R, enter the mass range by pressing \wedge.
- Under DETECT enter the ion collector type of your analyzer and under IS-TYP enter the existing ion source type.
- If you use the CP 400 set OPTION to $C P$ with \wedge.
- Confirm the configuration input by pressing the RETURN softkey.

QMH 400/410
Please refer to the QMH 400/410 user's guide [3].
Complete factory supplied systems have already been optimally aligned. Do not change any settings without valid reason. Optimize tune if best hit does not light up.

6.2 Filament protection

ease refer to the user's guide of the QME 125 [4] and QMA 125 [6], but do not change any factory settings.
Set the filament select switch to remote and polarity to "+"[4].

400 Optimize the filament current cut-off point for optimum protection of the filament.
a) Switch off the emission: press filam, the filam lamp goes out
b) Ensure that the pressure is $\leq 10^{-4} \mathrm{mbar}$.
c) Switch on filam: filam light turns on.
d) If Emission error *) is displayed continue with f).
e) If this is not the case, switch off filam, reduce emiss-E-PROT with \triangleq by 0.1 A and turn filam on again; repeat until Emission error appears.
f) Switch off filam, increase emiss-E-PROT with $\boldsymbol{~ 人}$ by 0.1 A and turn filam on again; repeat until Emission error no longer appears.
*) In case of **ERROR** press the error key to read out the type of error.

18 Note

If the switching threshold is abnormally high a fault exists in the ion source, the vacuum system, or the unit. Investigate the cause in order to prevent destruction of the filament.
If a new filament has been installed re-optimize after a few hours.
The D-PROT cut-off point for DEGAS is set analogously.

6.3 Degas

6.4 Offset correction

Please refer to the user's guide of the QMA and the ion sources. Switch to Degas only if the conditions specified there are fulfilled.
400 Optimize the filament protection for Degas mode as described above, however with ion src-D-PROT rather than emiss-E-PROT.
Switch on Degas with ion src-CTRL:START and confirm with $\&$.
125 See [6] and [4]

The EP 422 is an amplifier for very small currents. Its zero (offset) must be corrected occasionally. This is intentionally not performed automatically to prevent periodic dead times in data acquisition.
Perform an offset correction when the system is put into service for the first time, after the system (particularly the EP 422) has attained a stable temperature.
Subsequent repetition is advisable if deviations from the zero line occur.
Zero line shifts are often caused by ion and electron currents; the offset correction does not compensate these.
Choose cycle-FUNCT:OFFSET and start the offset measurement with run. The following appears:

Perform the measurement for SEM and Faraday if both EP 422 are installed. If only one EP 422 exists choose DETECT according to the current operating mode. The mass number should be selected in such a way that no ion current occurs. With CLEAR you can disable the offset correction; the offset values are set to zero.
The values of the ranges $10^{-5}, 10^{-7}, 10^{-9}, 10^{-11} \mathrm{~A}$ are not displayed, they are available at the interfaces.

400 For offset measurement the SEM voltage is switched off automatically, $R E S O L=1, F . A .=0 \mathrm{~V}$ and $E M I S S=10 \mu \mathrm{~A}$ are set. If you switch filam off, measurement takes place without emission.

6.5 Ion counter

With the IC 421 and CP 400 ion counter the measured value is displayed as a quasi-logarithmic bar across ten decades. The range is always selected automati cally; for linear analog output the display range is selected with $\mathrm{O}-\mathrm{RNG}$.
The discriminator threshold of the CP 400 preamplifier is set with amplif-CP-LEV. Recommended value: $0.1 \ldots 0.3 \mathrm{~V}$ with SEM-VOLTAGE : 2500 V .
The ion polarity is selected by choosing the ion source type ion src-TYPE:SPEC+ for positive ions or SPEC- for negative ions.

6.6 Extern input

6.7 Simulation

6.8 Measurement cycle

With detect-TYPE:EXTERN you can capture analog measured values of a different unit in place of the EP 422. Connect the signal to the EXT IN pins of the ctrl connector on the QC 422 (see p.11)
amplif-GAIN determines the gain ($x \pm 1 / x \pm 10$).
For experiments and tests a simulated spectrum according to the following diagram is available with config-SIMUL:INTERN. Use it to familiarize yourself with the operating procedures. For this purpose you do not need a vacuum system and also no equipment such as QMH or QMA.

The spectrum is generated as an HF generator control signal scan and inserted into the QC 422 electrometer signal path. It can be used in all mass modes.

[18 Note

For normal measures the simulation must be switched off: config-SIMUL:OFF. Only the detector types FARAD and SEM are admissible. config-SIMUL:EXTERN is reserved for factory tests.

The peak intensities for RANGE $10^{-5}, 10^{-7}, 10^{-9}$ and 10^{-11} are identical. The intensity is amplified by a factor of 10 for the intermediate ranges. The spectrum is repeated periodically from mass 64.

With cycle-MODE choose single channel (MONO) or multichannel (MULTI) mode. The measurement cycle is started and stopped with run/halt and its state is indicated with the mono, multi and halt LEDs.
The number of measurement cycles is chosen with cycle-CYCLES: $1 . . .10000$ or repeating (0).
You can choose external control with cycle-TRIG.
HALT The measurement cycle is stopped. The unit measures in mass-MODE:SAMPLE (even if a different MODE has been entered) in the selected channel on the mass defined with MASS (or FIRST) at the speed selected with DWELL (or SPEED). The switching functions are OFF, the signals on elm, mon and $\boldsymbol{A O}$ are available.

MONO Single channel mode: enter cycle-FUNCT:CYCLE and cycle-MODE:MONO.
The unit measures in the measurement channel chosen with select. If the channel is changed in the run state the measurement is cancelled and the new channel is started.
MONO is suitable for measurement tasks in manual mode. A separate channel is programmed for each task. This means that the parameters are continually avail able. You can quickly change the measurement task by changing the channel.

MULTI

Multichannel mode: enter cycle-FUNCT:CYCLE and cycle-MODE:MULTI
The 64 channels can be programmed with any parameters. The channels located between cycle-BEGIN and cycle-END are processed sequentially if they are not set to STATE:SKIP.
It is advantageous to first optimize each channel involved in MONO mode.

With the aux-COPY function load additional channels with the parameters of the first optimized channel. Subsequently you only need to adapt a few parameters of the individual channels.
To achieve the shortest measuring time the channels with identical detector type, electrometer range and SEM voltage should directly follow each other.
The measurement cycle time CYCLE-TIME consists of the measurement and pause times of the involved channels. It is measured by the built-in clock.
The clock starts with run, stops with halt and is displayed by pressing cycle. With cycles-CYCLES:1 (no. of cycles =1) you measure the time for one cycle.

PAUSE

6.9 Electrometer modes

AUTO

AUTO-D

When the channel is changed in MULTI channel mode the data acquisition must pause until the new measured value is stable. The pause time is set automatically by the QC 422 based on RANGE, FILTER, MASS, SEM voltage and detect-TYPE.
The pause time is displayed under the softkey amplif-PAUSE. If you want to achieve shorter cycle times or greater accuracy you can optimize it with amplif-P$C A L$. The minimum value is 1 ms with $P-C A L: 0.0$.
You can reduce $P-C A L$ in each channel until its measured value deviates inadmissibly. The preceding channel should not have a measured value that is almost identical, otherwise there is practically no transient response and the value of P-CAL would be too small. Change e.g. MASS of the preceding channel by $1 / 2 \mathrm{u}$ to determine whether or not its measured value is without influence on the one of the selected channel.
With the oscilloscope (triggering on the falling slope of sync) the transient response during the pause can be observed at elm and (see also p.46).

The range of the electrometer preamplifier can be selected in 3 different ways:
With amplif-MODE:AUTO the electrometer range is set automatically across all decades. This results in a huge dynamic response of over 10 decades or 200 dB . Use AUTO whenever possible. In this way you achieve the best resolution of the measured value and no overdriving of the amplifier can occur.
With amplif-MODE:AUTO-D (Auto down) the range is limited in the downward direction. This is usefully for noisy measurement signals and can lead to faster measurements. You can define the available dynamic response with RANGE-L. With amplif-MODE:FIX choose the measurement range with RANGE manually. This allows fastest measurements with a limited dynamic response.
With Scan-SPEED $<10 \mathrm{~ms} / \mathrm{u}$ there is only Fixrange.
For the most accurate measurements (e.g. isotope ratios) Fixrange is recommend ed because the mutual tolerances of the measurement ranges are eliminated or can be calibrated.
In the following diagram of the measurement signals the raw signal elm (see p.46) is represented always in FIX-RANGE because it is difficult to follow in AUTORANGE.
In all operating modes the measured values (except on elm) are multiplied times CALIB before they are output.

6.10 Mass scan modes

SCAN-N The mass-MODE:SCAN-N (SCAN-Normal) mode is used for recording an analog spectrum across the range defined with FIRST and WIDTH.
elm, mon, AO

The number of steps per mass depends on SPEED and the mass range, see p.9. With $S C A N-N$ the average value of the mass signal is output with each mass step.
Example: With SPEED $100 \mathrm{~ms} / \mathrm{u}$ and mass scale resolution $1 / 64 \mathrm{u}$ there is an integration time per step of $100 \mathrm{~ms} / \mathrm{u} \times 1 / 64 \mathrm{u}=1.56 \mathrm{~ms}$

With SCAN-N you obtain a direct image of the measured values captured by the measuring amplifier or the ion counter. This mode is particularly suitable for analyzing raw data, e.g. for optimizing parameter values.
SCAN-F With SCAN-F the measured values are additionally subjected to an FIR filter algorithm (Finite Impulse Response).

The FIR filter largely eliminates noise and interference so that also very small peaks can be detected against the background. Statistical intensity fluctuations which on account of the 90° SEM arrangement frequently account for the major portion of the noise are particularly well suppressed by the FIR filter. For this reason you should always use SCAN-F, except in the few special cases were raw data are actually required.

SAMPLE

With mass-MODE:SAMPLE the measurement is performed on the constant mass number MASS. In most cases it will be set to a peak top (ADJUST, see 6.12

With AVERAGE >1 a moving average (M) is formed across the number (n) of measurement cycles since RUN. Beginning with the first measurement cycle it supplies a value that becomes more stable with increasing number of cycles. In this way DWELL can be shortened without significant impairment of the filter effect (faster settling time).
The following recursive formulas apply:
a) $\mathrm{n}<$ AVERAGE : $\mathrm{M}_{\text {new }}=\mathrm{M}_{\text {old }}+\left(\mathrm{M}_{\text {new }}-\mathrm{M}_{\text {old }}\right) / \mathrm{n}$
b) $\mathrm{n} \geq$ AVERAGE : $\mathrm{M}_{\text {new }}=\mathrm{M}_{\text {old }}+\left(\mathrm{M}_{\text {new }}-\mathrm{M}_{\text {old }}\right) /$ AVERAGE

Time constant of the averaging: $\tau \approx$ AVERAGE \times cycle time

PEAK The mass-MODE:PEAK (peak processing) is an intelligent data reduction process which searches the spectrum for peaks in real time mode. Instead of 64 measured values/u only the intensity and mass number of detected peaks are output on the computer interface.

Mass scan is same as with SCAN

The marker at mon means that a peak of the displayed height has been detected

mon

Peak Processing runs with all $S P E E D$ settings. The peak search extends across the range defined with FIRST and WIDTH. The peak criteria of ADJ-TYP:COARSE apply, see Section 6.12.

There are two methods:

- With PEAK-L (Level) the peak processing algorithm is applied to the normal spectrum (SCAN-N).
- With PEAK-F the peak processing algorithm is applied to the measured values processed with the FIR filter. This is advantageous because parasitic signals have largely been removed from the measured values so that a very low THRESH can be used.

6.11 Integral spectrum

6.12 Adjust

Adjust COARSE

With mass-MODE:STAIR integer mass jumps across the range FIRST... WIDTH are performed. A bargraph spectrum is created.
After each mass jump the average value across approx. half the dwell time is formed.
Example: With SPEED $100 \mathrm{~ms} / \mathrm{u}$ the averaging time is $\approx 50 \mathrm{~ms}$
elm

AO, mon
The measured value appears after the average has been formed, that is, delayed by one mass

The start mass of each channel must be on a peak maximum. See ADJUST p. 44. If the peak maximums are not hit, large measuring errors are unavoidable. For this reason you should limit WIDTH per channel to approx. 10\% of the mass range. In this way you can compensate deviations of the mass scale by correcting the corresponding starting mass FIRST.

With mass-RESOL:OFF an integral spectrum is created that can be used, e.g. for total pressure measurement. See [1]

With cycle-FUNCT:ADJUST you can automatically optimize the mass number MASS to the peak maximum in SAMPLE (or STAIR) mode.

The measurement channel must be set to aux-STATE:ENABLE.
This possibility is advantageously used, for example, to optimize the system after turn on and particularly after several parameters have been changed.
With ADJ-TYP:COARSE a range of $\pm 1 / 2 \mathrm{u}$ around the mass number MASS is normally searched for a peak. The search range will possibly be enlarged by $\pm 1 / 4 \mathrm{u}$. If possible use amplif-MODE AUTO for ADJUST, it will be easier to obtain a result.

Peak criteria:

Four criteria must be met for a peak to be detected:
a) $I_{\text {max }}>2 I_{\text {min }}$
b) $I_{\text {end }}<0.5 I_{\text {max }}$
c) $I_{\text {max }}>I_{\text {tresh }}$
d) $\Delta \mathrm{m}_{50 \%} \geq 1 / 8 \mathrm{u}^{*}$ at $1 / 2 \mathrm{I}_{\text {max }}$ *) $1 / 4 \mathrm{u}$ with mass-MODE:PEAK

Time:

$\mathrm{t}_{\text {Adjust }} \approx 0.5 \ldots 1.25$ DWELL

Start:

Stop measuring cycle: run/halt:halt
Choose mass-MODE:SAMPLE
Choose cycle-FUNCT:ADJUST
Choose cycle-MODE:MONO or MULTI
Choose cycle-ADJ-TYP:COARSE
Start ADJUST measurement: run/halt:run

Procedure: Signal mon

With successful Adjust the mass number MASS of the measured channel is updated with the new value. If unsuccessful it remains unchanged.

Status message: After expiration a status message is displayed:

Symbols					Status code
ADJUST	STOP	ST	TUS CH	14: \rightarrow	000001
		TUP CYCL		**	**
FUNCT	MODE	ADJ-TYP	THRESH	RANGE	MASS
ADJUST	MONO	COARSE	0.01\%	1E-05	13.46

The 3 main parameters THRESH, RANGE, MASS can be entered here directly. You do no have to switch back to the channels group.
Symbols:
OK The adjust was successful
\rightarrow Increase MASS slightly
$\leftarrow \quad$ Decrease MASS slightly
\uparrow Increase Intensity or lower THRESH
\downarrow Decrease Intensity
I Peak too narrow (e.g. parasitic pulse or poor peak shape). Repeat ADJUST. If unsuccessful: investigate peak shape.

Status code:

Status code:		Mass number MASS				
	Peak width	Intensity				
	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Bit=1:	too narrow					
Symbol:	THRESH \uparrow	too high \downarrow	too low *) \rightarrow	too high \leftarrow	too low \rightarrow	

*) and intensity not dropped back to $1 / 2$

*) or preferably use amplif-MODE:AUTO

Adjust FINE

A peak maximum within the range of $\pm 1 / 8 \mathrm{u}$ around the mass number MASS is searched. Also in this case amplif-MODE:AUTO is recommended.

Peak criteria:

a) $I_{\max }>I_{1+1,5 \%}$
b) $I_{2}<I_{\max }-1,5 \%$
c) $I_{\max }>$ THRESH
d) No overdriving
e) $I_{3}<I_{\text {min }}+1,5 \%$
time:

$$
\mathrm{t}_{\text {Adjust }} \approx 16 \text { DWELL }
$$

Start: If you are not sure that a peak is located within the searched range, first perform an ADJUST COARSE.Start as described under COARSE, however with cycle-ADJ-TYP:FINE

Status message: As in ADJUST-COARSE, however, without information on mass number and peak width.
Bits 1, 2 and 5 are always zero.

	---	Intensity		Mass number MASS		
	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
$\begin{array}{r} \text { Bit=1: } \\ \text { Symbol: } \end{array}$	---	<THRESH \uparrow	too high	---	---	$\begin{gathered} \text { no Peak } \\ \rightarrow \leftarrow \end{gathered}$

Examples of unsuccessful fine searches:

6.13 Analog outputs

Connectors

Output formats

On the QC 422 there are some signal connections (see pin assignment, p. 11).
Nowadays measurement data are generally acquired with computers. For investigating possible measuring problems (noise, transient response, etc.) and for special cases the analog signals can be very useful.

Analog filtered electrometer signal. It can be readily evaluated only in ampMODE:FIX (Fixrange). With Autorange it becomes difficult to follow. elm is highly suitable for assessing the quality of the raw measured values. The calibration factor CALIB has no influence on elm.

```
mon
```

Monitor sequentially supplies the measurement signals of all measurement channels after they have been processed by the signal processor. It also serves as the analog output of the ion counter and can be used in linear or logarithmic format.
AO The AO/IC 421 option can output up to twelve analog measured values in linear or logarithmic format.
You can assign one or several measurement channels (output- $\mathrm{AO}-\mathrm{CH}$) to each of the twelve AO channels. If several measured values are assigned to the same AO channel they will be output sequentially.
Via the computer interface also data from the PC software can be output on the AO 421.
sync Indicates the start of the measurement and is suitable for triggering an oscilloscope.
scan Proportional to the momentary mass number
0 ...10.24 V for QMH 400/410; 0...10.00 V for QME 125
The behavior of the above signals in the various operating modes is described beginning on page 42.

The measured values at mon and AO have the following formats:
LIN Linear
LOG 3D Logarithmic across 3 decades
LOG 8D Logarithmic across 8 decades
LOG Logarithmic across 3 or 10 decades
The possible choices (operating mode dependent) can be found in the following tables, the scaling from the corresponding formulas and diagrams.
The formulas and graphics apply to positive measurement signals.
In the negative range the characteristics are mirror imaged at the zero according to the formulas a) ... e) and n) ... q)
Note:
$\log =\log _{10}$
$\mathrm{Uo}=\mathrm{U}_{\text {output }}$ at mon or AO
Mass units: U: [V] I: [A] Counting rate: [cps] counts per second, s^{-1}

Electrometer operation

detect-TYPE:FARAD, SEM

| mass-MODE | output-
 AO-MODE,
 MONITOR | amplif-
 MODE | Output format
 Decades | | V/Decade |
| :---: | :---: | :---: | :---: | :---: | :---: | Formulas

${ }^{1)}$) only for SCAN-SPEED $10 \ldots 50 \mathrm{~ms} / \mathrm{u}$, with STAIR $2 \ldots 5 \mathrm{~ms} / \mathrm{u}$
${ }^{2)}$ only for SCAN-SPEED $\geq 100 \mathrm{~ms} / \mathrm{u}$, with STAIR $\geq 10 \mathrm{~ms} / \mathrm{u}$
3) only at mon connector

LOG 3D b) for Uo: $1 \mathrm{~V} . . .10 \mathrm{~V} \quad \mathrm{I}=10^{-3} \times R A N G E \times 10^{0.3 \mathrm{Uo}}$
c) $\quad 0.25 \mathrm{~V} \ldots 1 \mathrm{~V} \quad \mathrm{I}=1.333 \times 10^{-3} \times \mathrm{RANGE} \times(\mathrm{Uo}+0.5)$
d) $\quad 0 \mathrm{~V} . . .0 .25 \mathrm{~V} \quad \mathrm{I}=4 \times 10^{-3} \times R A N G E \times$ Uo

Applicable with amplif-MODE:AUTO: RANGE $=O-R N G$.

LOG 8D e) for Uo: $0 \ldots . .10 \mathrm{~V}: \quad \mathrm{I}=10^{(0.8 \mathrm{Uo}-13)}$

Formula e)

Ion counting operation

detect-TYPE:ION-CNT

mass-MODE	output-AO-MODE, MONITOR	output-LOG-DEC	Output format		Formulas
			Decades	V/Decade	
SCAN, STAIR	LIN	---	1	10	g)
SAMPLE	LOG	3 DEC	3	3.333	h), i), k)
$\begin{gathered} P E A K \\ A D J U S T^{3)} \end{gathered}$		$\begin{gathered} 10 \mathrm{DEC} \\ (>20 \mathrm{~ms} / \mathrm{u}) \end{gathered}$	10	1	I), m)

LIN
g) for Uo: $0 \ldots 10 \mathrm{~V}$: \quad Rate $=0.1 \times O-R N G \times$ Uo

Formula g)

Extern input

Recording

detect-TYPE:EXTERN				
mass-MODE	output- AO-MODE, MONITOR	Output format		
	Decades	V/Decade	Formulas	
SCAN, STAIR	LIN	1	10	$\mathrm{n})$
SAMPLE, PEAK	LOG 3D	3	3.333	o), p), q)

LIN n) for Uo: 0V...10V UExtern $=(1 / G A I N) \times$ Uo

LOG 3D
o) for Uo: 1V...10V $U_{\text {Extern }}=(0.01 / G A I M) \times 10^{0.3} \mathrm{Uo}$
p) $\quad 0.25 \mathrm{~V} \ldots .1 \mathrm{~V} \quad \mathrm{U}_{\text {Extern }}=(0.01333 / G A I M) \times(\mathrm{Uo}+0.5)$
q) $\quad 0 \mathrm{~V} . . .0 .25 \mathrm{~V} \quad \mathrm{U}_{\text {Extern }}=(0.04 / G A I M) \times \mathrm{Uo}$

For recording analog measured values (spectra or versus time) the following possibilities exist:

Paper feed should match SPEED, e.g. $1 \mathrm{~mm} / \mathrm{s}$ for $1 \mathrm{~s} / \mathrm{u}$.
Sensitivity: 10 V for full scale deflection
Mirror imaged spectra can be inverted with amplif-CALIB: -1.

Instead of mon you can also use one or several AO outputs, see p. 11.

y/t - Oscilloscope

x/y Recording

6.14 Switching functions

Vacuum relay

Overpressure relay

Window comparator

The same applies as for the y / t recorder. Additional tips:
Choose a WIDTH that is somewhat larger (e.g. 14) than the range to be represented (e.g. 10 u) and optimize for minimum flicker!
sync triggers the oscilloscope with each start of the selected channel. Trigger manually to the positive slope, for PAUSE to the negative slope.
Digital storage scopes are advantageous
The scan output supplies the mass number signal ($0 . . .10 .24 \mathrm{~V}$ for the full mass range). x / y recording is only suitable for special cases.

With the TRIP switching functions measured values can be monitored in massMODE:SAMPLE or with detect-TYPE:PI,PE,AI.
With halt the state of the switching functions is OFF.
Each measuring channel has two switching functions: TRIP A and TRIP B.
These can be assigned to the output bits of the DO 420A modules as desired and also be interrogated via the computer interface.
If several switching functions are assigned to the same DO bit they are logically combined with an AND function. There is no warning if the DO bits are already assigned.
The DO 420A can also be controlled from the computer interface. Simultaneous assignment of switching functions is not advisable.

Choose trip-TYPE : ABS
Enter trip-LEVEL-A
ABS-TRIP A switches ON when threshold A is exceeded

With trip-DO-A:xx assign a DO bit if DO 420A exists
Choose trip-TYPE : ABS
Enter trip-LEVEL-B
ABS-TRIP B switches ON when threshold B is exceeded

With trip-DO-B:xy assign a DO bit if DO 420A exists.
The window comparator is only possible in conjunction with the DO 420A module Choose trip-TYPE : ABS
With trip-LEVEL-A enter the upper threshold
With trip-LEVEL-B enter the lower threshold With trip-DO-A:xx, trip-DO-B:xx assign A and B to the same $D O$ bit.

Hysteresis function
The hysteresis prevents fluttering with unsteady signals. The minimum hysteresis is 10%
Choose trip-TYPE : HYST
With trip-LEVEL-A enter the lower threshold
With trip-LEVEL-B enter the upper threshold
TRIP A switches ON when the signal drops below LEVEL-A and switches OFF when it exceeds LEVEL-B

TRIP B works inversely to A

With trip-DO-A : xx, trip-DO-B : xy assign the DO bits if DO 420A exists
Window and hysteresis
This requires two measurement channels and one DO 420A.
With select: x choose the first measurement channel x
Choose trip-TYPE : HYST
With trip-LEVEL-A enter the lower threshold
With trip-LEVEL-B enter the upper threshold
With trip-DO-A assign a DO bit
With aux-COPY TO CH: $x+1$ copy channel x to channel $x+1$
With select: $x+1$ choose the measuring channel $x+1$
With trip-LEVEL-A enter the lower threshold
With trip-LEVEL-B enter the upper threshold

Many other combinations are feasible.

7 Troubleshooting

7.1 General

Skilled personnel

Work on an open unit (as specifically instructed in some parts of this Chapter) may only be performed by skilled personnel.

Corresponding warnings are not given separately on each occasion!

The relevant safety instructions given in the corresponding Chapters must be conscientiously followed.
Protection against electrostatic discharges (ESD) is absolutely essential, otherwise the Balzers warranty becomes null and void.

7.2 Warnings

7.3 Error messages

Warnings related to operator action are displayed for approx. 10 sec.

No	Warning		Meaning, comments
1	** OP ERROR	**	Operator error, illegal entry
2	** \uparrow ONLY \downarrow *	**	Parameter change with * 人 V , シ
3	** > MAX	**	Input value too large
4	< MIN	**	Input value too small
5	** SYNTAX!	**	Incorrect format
6	** REMOTE	**	Unit set to computer operation
7	** CH SKIP	**	Selected channel is in aux-STATE:SKIP
8	** EXTERN!	**	Control by external signal
9	** HARDWARE **	**	Necessary hardware does not exist
10	** ENTER ONLY ** SIMULATION	**	Confirmation only possible with Simulation mode activated

No	Warning			Meaning, comments
17	$* *$	NO HV	$* *$	No HV 420 or HV 421 exists
18	$* *$	NO IS	**	No IS 420 exists
19	$* *$	CANNOT DEG	**	DEGAS not possible with FILAM:1+2
20	$* *$	NO AUTO	**	FILAM:1+2 not selectable with DEGAS
21	$* *$	ONLY F1	**	Only one filament available
22	$* *$	BUFFER	**	Buffer management not OK

Other operator information is displayed in suitable locations.

For many error types **ERROR !!** is displayed. To obtain detailed information press the errorkey.

NEXT displays the next error messages if more than one exists.
CLEAR deletes all messages (unresolved errors reappear immediately) RETURN jumps to the preceding display information

D3 Note

Find out whether or not error messages are reproducible.
For this purpose switch all involved components OFF and ON again.
Restart the computer and the software.
For sporadic errors or errors that are difficult to reproduce see p. 54
The following tables help you to take appropriate action in response to reproducible error messages or faults.

This information and methods apply to the most probable cases, however, exceptions are feasible.

7.3.1 ERROR table

No	Description	Possible cause / Test methods	Correction
2	Communication CS to QC	CS 422, its cable or QC 422 defective	Replace
3 4 7	CS 422 stack overflow CS 422 idle error, op. syst. overloaded CS 422 watchdog error	CS 422 defective	Replace
$\begin{array}{r} \hline 14 \\ 15 \\ 16 \\ \hline \end{array}$	CS 422 Display RAM CS 422 EPROM checksum incorr. CS 422 RAM	run testprogram: config-TEST-CS422:EPROM-T or RAM-T	Replace CS 422 if not ok
$\begin{aligned} & 17 \\ & 18 \\ & 19 \end{aligned}$	QMS controller stack overflow Reset error QMS controller watchdog error	QC 422 defective	Replace
20	QMS controller EPROM checksum	run testprogram: config-TEST-QMS:EPROM-T	Replace QC 422 if not ok
$\begin{aligned} & \hline 21 \\ & 22 \\ & 23 \\ & \hline \end{aligned}$	QMS controller NOVRAM QMS controller dual port RAM QMS controller buffer RAM	run testprogram: config-TEST-QMS:RAM-T	Replace QC 422 if not ok
$\begin{aligned} & 24 \\ & 25 \end{aligned}$	DSP-EPROM checksum DSP dual port RAM	run testprogram: config-TEST-DSP:EPROM-T or RAM-T	Replace QC 422 if not ok
$\begin{aligned} & \hline 26 \\ & 27 \\ & 28 \\ & 29 \\ & \hline \end{aligned}$	Monitor-DAC error Resolution-DAC error AO-DAC error ADC error	Only for factory use with special instruments	
33	QMS controller idle error (Op. sys.)	QC 422 defective	Replace QC 422
34	SEM error	SEM high voltage overloaded or defective Cabling/jumper error Faulty insulation Arcing SEM should have $18 \mathrm{M} \Omega$ $C D$ should have $>100 \mathrm{M} \Omega$ Measure 1 V per 1 kV at test socket Measure actual high voltage	See p. 18 and 19 Check by detaching cable Switch off unit for 2 min . Ohm meter Insulation tester DVM High voltage probe
35	CD error	CD Voltage HV 421 overloaded or defective	See Error 34
36	Ion source error	V1...V9 overloaded or defective Switch off the unit, detach IS cable: if error disappears if error persists	Check insulation of Cable /QMA F1, F2 (on IS 420) or IS 420 defective
$\begin{aligned} & \hline 37 \\ & 38 \end{aligned}$	Filament 1 defective Filament 2 defective	Test filament 1 or $2(\approx 1 \Omega)$ and cable	QMA 400 [5], IS 420 pin assignment See p. 12
39	Emission error (Emission \neq set point)	Pressure too high Filament burnt out (QMA 125), Filament transport protection not removed Switch emiss:OFF -...ON, if unsuccessful Adjust PROTECTION Cable interrupted or insulation fault Wiring in QMA interrupted or Insulation fault Wrong settings	$\mathrm{p}<10^{-4} \mathrm{mbar}$ Check with ohm meter, replace, if defective; see QMA 125 [6] Remove [5], [6] See 6.2 or QME 125 [4] Measure QMA 400 [5] QMA 125 [6] Test report and [5], [6]
40	CAN error	QC 422 defective (CAN for CS 422)	Replace QC 422
41	Parameter lost	QC 422 NOVRAM defective	Replace QC 422
42	Communication from QC to CS	CS 422, its cable or QC 422 defective	Replace
43	Communication QMS-controller / DSP	Quadrupole controller QC 422 defective	Replace QC 422
44	Communication LAN	LAN communication not o.k.	Check connection, settings, parameters, see p. 20, [7] etc.
45	Communication RS-232-C	RS-232 communication not o.k.	Check connection, settings, parameters
46	RF error	QMH 4×0 in heat-up phase Error message from QMH 4x0	Heat-up time approx. 10 min . QMH 4x0 [3]

7.4 Measurement signal problems

Problem	Possible cause / Test methods	Correction
No measurement signal with EP 422 or CP 400	Try simulation	Replace QC 422 if not ok
	Cabling not o.k.	Check, see p. 18 u. 19
	Wrong detector selection	Set detect-TYPE correctly
	No emission	Switch on filam
	Emission too low	Adjust: see test report
	No SEM high voltage	Switch on sem:, see also error 34. QME 125 fuse F1 [4]
	SEM high voltage too low	Increase: detect-SEM channel dependent sem hv-SEM-VOLTAGE channel independent See also Error 34 for HV 420
	No high voltage with HV 421	See Error 34
	Field axis voltage too low	See test report v1..v6-F-AXIS (possibly V4) QME125 [4]
	Wrong ion source parameters	See test report, QMA400 [5], QMA125 [6]
	Resolution too high: try integral spectrum with mass-RESOL:OFF.	If integral spectrum exists adjust resolution. QMH 4x0 [3], QME 125 [4]
No measured value with EP 422	EP in wrong connector of QMH	Check, see p. 18
	SCAN-N with $10 \mathrm{~ms} / \mathrm{u}$, range $10^{-9} \mathrm{~A}$ Disconnect EP 422 from QMA, touch input with screwdriver	50 (60) Hz signal should appear Check signal with an oscilloscope, if not o.k. replace EP 422
No measured value with CP 400	Threshold too high	Decrease amplif-CP-LEV see p. 39
Electrometer signal negative	EP1 and EP2 cable mixed up	Check, see p. 18
	POLARITY switch on QME 125 set to "-"	Set POLARITY to "+"
Electrometer offset strongly mass dependent	Loose ground connection (EP input or below QMA connector plate)	Tighten / correct
	Open shielding below QMA connector plate	QMA 400 [5], QMA 125 [6]
Electrometer signal: - not zero between peaks - negative / small peaks missing	Offset not aligned	Perform offset correction, see p. 39
Offset in range 10^{-12} very high	Temperature of the EP 422 too high	Decrease
	Bad insulation collector to flange (good: >>1 G Ω)	Correct insulation fault \rightarrow QMA 400 [5], QMA 125 [6]
	Moisture in electrometer or on analyzer connector	Dry with warm air (no over $60^{\circ} \mathrm{C}$) See p. 55
Electrometer signal sensitive to vibrations	Knurled nut loose on EP input Shield below connector plate of QMA not correctly installed	Tighten Correct shielding QMA 400 [5], QMA 125 [6]
High noise signals with EP 422	Analyze signal (amplif-MODE:FIX, SCAN-N, high $S P E E D$) with PC or elm signal with oscilloscope	Remedy noise or choose slower SPEED, DWELL and/or increase amplif-FILTER
High counting rate with CP 400 also besides peaks	Corona or arcing in CP 400 or in HV 420 in HV 421 in high voltage cables in QMA or SEM	Open CP 400 and dry with war air $\left(<50^{\circ} \mathrm{C}\right)$, Remove dust. Replace HV 421 Replace cable QMA 400 [5], QMA 125 [6]
High counting rate with CP 400 also without high voltage	Poor ground connection, shielding open, coupling of parasitic signals, e.g. with isolated system set-up.	Correct Establish shielding or decouple
Measurement signal: -Limited to values <10 V -Jumps to 10.24 V	With SEM and FIX-range 10^{-11} and $10^{-12} \mathrm{~A}$	EP 422 overdriven Use Autorange or RANGE 10^{-10} and higher SEM voltage
Problem	Possible cause / Test methods	Correction
Unsatisfactory peak shape, poor sensitivity	Small emission (0.1 mA) cannot be set on QME 125	Replace the insulators in the ion source, see QMA 125 [6]

	Possible cause / Test methods	Correction
	Ion source insulation in analyzer bad (good: $>100 \mathrm{M} \Omega)$	Replace the insulators in the ion source, see QMA 400 [5], QMA 125 [6]
Unsatisfactory peak shape, poor sensitivity	Ion source or rod system in analyzer contaminated or defective	Clean QMA 400 [5], QMA 125 [6]
	SEM voltage too low	See Error 34
	SEM contaminated or defective	Replace SEM, QMA 400 [5], QMA 125 [6]
Peaks become wider/narrower with increasing mass number	Incorrect setting of resolution coarse	Adjust QMH 4x0 [3], QME 125 [4]

7.5 General problems

Problem	Possible cause / Test methods	Correction
Fans not running, no indication on CS 422 or power-LED	Line voltage missing or too low	Check line voltage
	Power cable defective	Replace power cable
	Short circuit in external unit such as QMH 4×0 or QME 125	Switch off / unplug ext. equipment / switch on again. If unsuccessful replace the defective unit.
	Short circuit on bus or in wiring Defective power supply	Trace Replace power supply (manufacturer's warranty becomes void if the power supply is opened)
Fans running, display on CS 422 is blank	Contrast strongly out of adjustment	Adjust contrast with \square
	CS 422 or its cable defective	Replace
	QC 422 not correctly installed or defective	See p. 23 or replace
CS 422 keys dead	Control via interface	Manual control: config-CTRL-MODE:CS 422
QMH 4×0 connector does not fit into QC 422	QMH cable with old locking device	Use adapter, see p. 56
Sporadic error messages	EMC problems	Correct the ground connection, see p. 16 Detach QMG cable from noise sources Identify noise source and eliminate noise Use LAN (fiber optics)
	Line voltage dips	Check supply voltage quality
No ArcNet communication	Check status LEDs of the OPA 200, check FO connection	OPA 200 [7]
	FO connectors contaminated	Clean, e.g. with alcohol
	HUB has no power	Check
	Stray light	Mount caps on all unused FO connectors!
	Wrong settings	Check jumper settings on all LAN units QC 422, OH 421. See p. 20 and [7], [8]
	Wrong node addresses	Correct
	QC 422 defective	Replace QC 422
	Defective LAN port device	Reduce system to minimum and then rebuild it in steps

7.6 Service interventions

If you are unable to remedy a fault or if you are not allowed to do so due to the lack of skilled personnel, please contact the responsible service location.

If you need advice or if you want to return the equipment for repair, please supply a comprehensive description of the error together with:

- Description of fault, e.g. hard copies, recorder charts and text
- Application conditions and operating modes under which the error occurs
- In case of sporadic errors all observations that could help to reproduce the error
- Type, series, software and firmware numbers of all components involved.

Products that have been exposed to vacuum conditions must always be accompanied by a completed contamination declaration VDMA No. 2121.

8 Maintenance

The QMS 422 and QMI 422 have lateral ventilation inlets. Their filters are to be cleaned before the air circulation becomes obstructed. The cleaning interval depends on the local dust evolution. Dry dust can easily be removed with the aid of a vacuum cleaner.

Skilled personnel

If necessary remove the filters and wash them in a mild soap solution. Dry them well before you reinstall them!
Defective filters should be replaced, see p. 56.
The installed fans should be checked semi-annually. Replace them if they are not running smoothly or are overly noisy.
Dusty circuit boards can be cleaned with compressed air (max. 2 bar). Make sure that no components get damaged or bent.

Moisture (condensation) in the EP 422 can lead to unstable behavior (offset fluctuations). Open the EP 422 and dry it with a hair dryer (max. $60^{\circ} \mathrm{C}$).
Refer to the maintenance instructions in all the user's guides of the components that form part of the system. See list of literature on p. 58.

9 Decommissioning

Please contact your Balzers service location on instructions of how to dispose of your system.

Appendix

A: Default parameter values For activating the default parameters see Parameter INIT.
Channels

General

Parameter	Function	Default value	Parameter	Function	Default value
AI-CH	detect	0	MODE	amplif	FIX
AO-CH	output	1	MODE	mass	SCAN-N
AO-MODE	output	LIN	MONITOR	output	LIN
AVERAGE	mass	1	O-RNG	output	E-1
CALIB	amplif	1.000 E0	P-CAL	amplif	1.0
COPY TO XX	aux	0	PE-CTRL	detect	OFF
CP-LEV	amplif	0.00 V	PI-CH	detect	1
DO-A	trip	OFF	RANGE	amplif	E-5
DO-B	trip	OFF	RANGE-L	amplif	E-5
DWELL	mass	1 s/u	RESOL	mass	25
FILTER	amplif	AUTO	SEM	detect	SEM-HV
FIRST	mass	14.00	SPEED	mass	1 s/u
GAIN	amplif	$\times 1$	STATE	aux	ENABLE
LEVEL-A	trip	$1.00 \mathrm{E}-6$	THRESH	mass	0.3% F.S.
LEVEL-B	trip	$1.00 \mathrm{E}-5$	TYPE	detect	SEM
LOG-DEC	output	3 DEC	TYPE	trip	ABS
MASS	mass	14.00	WIDTH	mass	+16

Parameter	Function	Default value	Parameter	Function	Default value
BAUD	config	2400 Bit/s	MODE	config	CS 422
DETECT	config	SEM	NODE	config	176
IS-TYP	config	CB	OPTION	config	NO
MASS-R	config	512	QMA	config	400
			SEM+FIL	config	INTERN

Ion source

Parameter	Function	Axial	CB	Grid	SPM	Spec+/-
E-PROT	emiss	4.40 A	4.40 A	4.40 A	3.50 A	0.00 A
EMISS	emiss	1.00 mA	1.00 mA	1.00 mA	0.50 mA	OFF
V1	v1...v6	90 V	90 V	90 V	40 V	0 V
V2	v1...v6	70.0 V	70.0 V	70.0 V	40.0 V	0 V
V3	v1...v6	+20.0 V	+20.0 V	0.0 V	0,0 V	0 V
V4	v1...v6	15 V	15 V	15 V	3 V	0 V
V5	v1...v6	0 V	250 V	0 V	0 V	0 V
V6	v1...v6	300 V	300 V	300 V	110 V	0 V
V7	v7...	0 V	0 V	0 V	0 V	0 V
V8	v7...	0 V	0 V	0 V	0 V	0 V
V9	v7...	30 V	0 V	0 V	30 V	0 V

Operation

Parameter	Function	Default value	Parameter	Function	Default value
ADJ-TYP	cycle	COARSE	FIL1	ion src	SET 0
BEGIN	cycle	0	FIL2	ion src	SET 0
COPY TO SET	ion src	SET 0	FUNCT	cycle	CYCLE
CYCLES	cycle	REPEAT	MODE	cycle	MONO
D-EMIS	ion src	10.0 mA	MODE	ion src	NORMAL
D-PROT	ion src	4.00 A	SEM-VOLTAGE	sem hv	1500 V
D-TIME	ion src	10 min	TRIG	cycle	INTERN
END	cycle	63	TYPE	ion src	CB
FILAM	ion src	1			

B: Literature

[1] Technological information
Partial pressure measurement in vacuum technology BG 800169 PE
[2] Communication protocol Quadrupole Controller QC 422 BG 800452 BE
[3] Operating instructions RF Generator QMH 400 / 410 BG 800409 BE
[4] Operating instructions Quadrupole electronics QME 125 BG 800325 BE
[5] Operating instructions QMA 400 / 410 / 430 Analyzer BK 800127 BE
[6] Operating instructions Analyzer QMA 125 BK 800153 BE
[7] User's guide Network Controller Board OPA 200 SH-ARC BAL
[8] Operating manual Optical Hub OHA 200 BG 803054 BE
[9] Operating instructions Pirani module PI 420 BG 800182 BE
[10] Operating instructions Penning Module PE 420
BG 800183 BE

Ordering source
Balzers Instruments, FL 9496 Balzers, Principality of Liechtenstein

C: Index

Accessories	60
ADJUST	
coarse	47
fine	48
AI 421	$6 ; 16 ; 26$
Analog filter	9
Analog measured value output	49
Analog signal Extern	43
AO Analog outputs	49
AO 421	$6 ; 25$
ARCNET	
\quad Interface	$10 ; 21$
network	22
Average	45
Bus module	
installation	25
Cabling	19
CD Voltage adjustment	26
Configuration	41
Connections	
analog signals	49
on IS 420	12
on QC422	11
CP 400	$6 ; 18 ; 18$
CS 422	$6 ; 24$
DI 420	$6 ; 14 ; 26$
DO 420A	$6 ; 15 ; 26$
Electrometer	
Auto, Fix	44
elm Electrometer output	49
EP 422	$13 ; 18$
Error	
messages	54
Extern Input	43
Fault isolation	54
Filament protection	41
FIR-Filter	45
First time operation	41

Note:
Information on the parameters can be found in the alphabetical list beginning on page 28

Group	
channels	28
general	29
ion source	29
operation	29
HV 420	6; 14; 26
HV 421	6; 14; 26
IC 421	6; 25
Installation	17
Integral spectrum	46
Ion counter	42
Ion polarity	43
IS 420	5; 12; 26
LAN interface	10; 21
Literature	62
Maintenance ${ }^{\text {Mass scan }}$	
Mass scan modes	45
Measured value	
display	27
recording	51
Measured value output	
lin, log	49
Measurement cycle	
Measurement signal problems	57
mon Monitor output	49
Network 23Offset	
Offset correction	42
OH 421	7; 16; 22
OHA 200	7
Operation	27
Options	
installing/removing	24
Overview	6
Ordering numbers	60
Overview series 125/400 family	4
Parameter display	27

Parameters	
alphabetic list	30
Pause	44
PE 420 Penning module	$6 ; 26$
PEAK	47
\quad maximum	46
processing	46
PI 420 Pirani module	66
Programming	62
Protection	41
QC 422	8
QMA 125	6
QMA 400	5
QME 125	6
QMH 400/410	5
QMI 422	5
QMS 422	5
Recording	51
Resolution	9
Mass scale	9
Measured value	$10 ; 21$
RS-232-C	3
Safety symbols and information	45
SAMPLE	49
scan Mass number signal	45
SCAN-F	45
SCAN-N	59
Service interventions	43
Simulation	
Spare parts	60
STAIR	
Switching functions	46
sync Synchronization signal	52
Technical data	49
TRIP	8
Troubleshooting	52
Vacuum measurement	54
Validity	6
Zero line	2
	42

